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Abstract Classification and characterization of the

shape of plant organs are important tools for plant

biologists, breeders and growers. Here we use bound-

ary measurements, i.e. contour morphometric data, of

scanned tomato fruits in conjunction with elliptic

Fourier shape modeling and Bayesian classification

techniques to find the optimum number of shape

categories. Our findings show that there are nine

computationally and visually distinct tomato shape

categories: ellipsoid, flat, heart, long, long rectangular,

rectangular, round, obovoid, and oxheart. Analyses of

fruits from a diverse set of tomato accessions demon-

strate that some varieties carry fruits that conform to

predominantly one shape category while others carry

fruits that conform to multiple shape categories. In

particular the categories oxheart and long rectangular

feature fruit that tend to equivalently fit several

categories of shape, while the flat and obovoid

categories contain fruit that consistently conform

exclusively to a single category. The findings show

that elliptic Fourier shape modeling and Bayesian

classification provide an excellent tool for further in

depth analyses of fruit shape variation that may occur

across varieties and/or result from growth under

different environmental conditions.

Keywords Classification � Contour morphometric

analysis � Fruit shape � Modelling � Tomato �
Uniformity

Introduction

Selections of fruit and vegetable crops resulted in

numerous varieties that differ in shape and size of the

produce (Paran and van der Knaap 2007; Pickersgill

2007). The dimensions of the produce are important

selection criteria when developing new varieties that

are targeted to fill specific market needs. For example,

rectangular and blocky tomato fruit are typically used

in the processing industry for the production of tomato

paste and sauce, as well as canned and diced tomatoes.

Those fruit are harvested mechanically and the shapes

of the produce are critical to prevent the fruit from

rolling from conveyer belts. Other fruit shapes, such as

ellipsoid, round and heart, are primarily found in
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varieties targeted to the fresh market industry to be

eaten fresh as in salads. Flat and large tomatoes are also

used in the fresh market industry and are typically used

as slicing tomatoes for sandwiches and hamburgers.

Classification of the tomato plants based on fruit

shape is critically important for the correct categori-

zation of the different varieties (Union for the

Protection of New Varieties of Plants (UPOV) and

the International Plant Genetic Resources Institute

(IPGRI) (IPGRI 1996; UPOV 2001). In recent years,

several genes that control tomato fruit shape have been

cloned (Cong et al. 2008; Liu et al. 2002; Munos et al.

2011; Xiao et al. 2008). The majority of fruit shape

diversity found in the germplasm is controlled by these

four known genes: SUN and OVATE regulating fruit

elongation; and LOCULE NUMBER and FASCI-

ATED regulation locule number and flat shape

(Rodriguez et al. 2011). However, potentially many

more genes with subtle effects on organ shape underlie

the entire tomato morphological diversity (Rodriguez

et al. 2013).

Fruit shape can be analyzed using morphometric

studies, which are defined as the quantitative analysis

of a biological form (Bookstein 1982; Rohlf 1990).

Morphometric analysis uses the position of and

distance between landmarks of the object as the

source of morphological data. These modeling meth-

ods have been used to investigate phenotypic varia-

tions (Chandler and Crisp 1998; Henderson 2006;

Klingenberg and Monteiro 2005; Lihova et al. 2004;

Sonibare et al. 2004; Weight et al. 2008), as well as

evolutionary analyses (Borba et al. 2007; Langlade

et al. 2005). Morphometric analyses have also been

applied in genetic studies of anatomy in animals

(Cheverud 1996; Klingenberg et al. 2001; Weber et al.

1999) as well as plants (Dryden and Mardia 1998;

Langlade et al. 2005; Perez–Perez et al. 2002). The

advantage of morphometric analyses is that they

require neither prior knowledge nor predetermined

notions of the shape features that will be measured.

Therefore, morphometric analyses offer less biased

assessment compared to other evaluations of shape.

Previously, we proposed a revised tomato variety

classification scheme found at UPOV and IPGRI. The

revised classification was based on visual inspection

and fruit shape analyses using the Tomato Analyzer

software (Brewer et al. 2006; Gonzalo et al. 2009;

Rodriguez et al. 2010). This resulted in the classifi-

cation of tomato varieties into eight categories: flat,

round, heart, oxheart, long, rectangular, obovoid and

ellipsoid. This classification was supported by the

analysis of 36 shape attributes implemented in the

Tomato Analyzer software (Rodriguez et al. 2011).

The most important attributes controlling the shape

were: fruit shape index (ratio of fruit length over

width), distal end protrusion, widest width position,

proximal end blockiness at 20 %, distal angle at 20 %,

rectangular and proximal eccentricity. However, the

classification may have been biased since the catego-

rization was determined manually and the Tomato

Analyzer software captures only a limited number of

shape attributes. Moreover, varieties were classified

into one category of shape, even though a particular

variety may have carried differently shaped fruits. It is

also likely that certain tomato varieties may carry

more uniformly shaped fruit, conforming to one shape

category, whereas others carry variably shaped fruit,

conforming to several shape categories. The unifor-

mity of the produce is highly desirable, for example

when the produce is harvested mechanically and

should fit certain dimensions that are optimized for a

particular production system.

The goal of this research was to model the tomato

fruit shapes by using contour morphometric data

without taking into account the classification of the

variety. The fruit boundary information was used to

derive elliptic shape descriptors which model closed

contours and, in addition, were invariant to scale and

rotation. These descriptors were further classified to

identify the shape categories, thereby facilitating the

identification of distinct classes represented by tomato

varieties from a phenotypically diverse germplasm

collection. The contour morphometric analysis showed

that the classes identified previously were largely

upheld. Additionally, this new approach allowed for

the identification of shape classes and tomato varieties

that carried fruit that varied significantly in uniformity.

Materials and methods

Plant materials

Forty eight phenotypically distinct tomato varieties that

represented the eight classifications (Rodriguez et al.

2011) (supplemental Table 1) were grown in three

locations: Mountain Horticultural Crops Research and

Extension Center in Mills River, North Carolina; Ohio
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Agricultural Research and Development Center in

Wooster, Ohio; and New York State Agricultural

Experiment Station in Geneva, New York in summer

of 2010. At each site, three seedlings per variety were

transplanted in separate field plots. Two fruits were

collected from each plant, cut longitudinally and

scanned. Strangely shaped fruit and those that were

immature were removed from the dataset resulting in a

total of 784 longitudinal sections for the analysis.

Obtaining morphometric data from scanned fruit

images

Fruit images were saved as jpeg and analysed using the

latest version of Tomato Analyzer (Rodriguez et al.

2010). The morphometric data used were a sample of

(x,y) coordinates from the contour of longitudinally

cut fruit sections. We choose the setting of 200

2-dimensional boundary points. The (x,y) pairs were

collected in a counter-clockwise direction starting

from the proximal end, which was manually corrected

in Tomato Analyzer if needed, with 100 points equally

distributed on the left side of the fruit down to the distal

end, and 100 points equally distributed from the distal

end to the proximal end on the right side of the fruit.

Deriving shape descriptors from morphometric

data

From each fruit contour, the elliptic Fourier-normal-

ized coefficients were computed as described previ-

ously (Kuhl and Giardina 1982) and implemented in

supplemental Algorithm 1. The normalization ensured

that the model was invariant to spatial translation and

rotation. The model depended on how many harmon-

ics (H) were considered, i.e. the number of terms in the

Fourier series. Since the optimal number of harmonics

to be used for a particular problem is not known a

priori, we investigated several including H = 5, 15,

20, 25, and 30. Further, from these coefficients,

2 9 H-1 normalized shape descriptors were obtained

by using the algorithm shown in the supplemental

Algorithm 2. These shape descriptors were scale-

invariant and used as input to the AutoClass Bayesian

clustering system (Achcar et al. 2009).

Identifying clusters of similar shape descriptors

through AutoClass

The AutoClass Bayesian clustering program is available

at NASA (http://ti.arc.nasa.gov/tech/rse/synthesis-

projects-applications/autoclass/autoclass-c/) and at the

Institute Jacques Monod (http://ytat2.ijm.univ-paris-

diderot.fr/AutoclassAtIJM.html). AutoClass has been

used in various scientific applications (Goebel et al.

1989; Kanefsky et al. 1994) including in biology for the

prediction of novel intron–exon boundaries in genome

sequences (Cheeseman and Stutz 1996). The AutoClass

Bayesian classification system uses a finite mixture

model and an Expectation–Maximization algorithm to

find the optimal classes within the data. In essence,

AutoClass fits a mixture of Gaussians over the data.

AutoClass started with random parameters for the

Gaussians and, after many iterations, these parameters

were updated to minimize the fit error. The algorithm

also varied the number of Gaussians in search for the

best model that fitted the data.

AutoClass is an unsupervised clustering technique,

which means that it finds clusters within data accord-

ing to certain attributes, in this case the shape

descriptors. However, the validity of these clusters

needed to be further investigated by subject matter

experts in a metaclustering step, as illustrated below.

Evaluating clustering performance

The following notations were used: Ck; k ¼ 1;K was

the class k;

Ckj j denoted the number of examples in class k;

H denoted the number of harmonics;

sk
i ; i ¼ 1; Ckj j; k ¼ 1;K was the shape descriptor

vector of example i in class k;

Table 1 Statistics of the final nine classes from Fig. 3b

Class No. of examples

in class

Error Variance

1 Round 189 0.13 0.0036

2 Rectangular 99 0.06 0.0018

3 Ellipsoid 96 0.10 0.0051

4 Flat 94 0.15 0.0060

5 Obovoid 80 0.23 0.0059

6 Oxheart 76 0.06 0.0145

7 Long rectangular 60 0.12 0.0054

8 Heart 54 0.09 0.0046

9 Long 36 0.32 0.0110

The class error and variance are defined by Eqs. (2) and (5)
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sk
i ðjÞ; j ¼ 1; 2 � H � 1 was the jth component of the

shape descriptor vector si
k.

For each of the k classes outputted by AutoClass,

the class prototype was defined as

Sk ¼
P Ckj j

i¼1 sk
i

Ckj j
k ¼ 1;K ð1Þ

The individual class error was defined in Eq. (2) as

the mean of the Euclidean distance between the class

prototype Sk and the class shape descriptors si
k.

err Ckð Þ ¼
P Ckj j

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2H�1
j¼1 sk

i jð Þ � Sk jð Þð Þ
q

Ckj j
ð2Þ

with k ¼ 1;K, and j ¼ 1; 2 � H � 1.

The overall clustering error was obtained by

err ¼
XK

k¼1

err Ckð Þ ð3Þ

Shape visualization, meta-classification, and class-

variance evaluation

To visualize the shape corresponding to a particular

cluster, the class average of the non-normalized

Fourier coefficients were computed. The non-normal-

ized coefficients were used to obtain a shape model in

the original space, i.e. the raw contour space. Then 200

points were reconstructed from the averaged elliptic

Fourier vectors as shown in the supplemental Algo-

rithm 3 and were plotted in the original space.

In the applications described above, a metacluster-

ing step was used after AutoClass to further refine the

unsupervised findings. This is explained as follows:

the unsupervised learning is meant to find natural

patterns in data, which human experts could not

observe otherwise, mainly due to size and high

dimensionality of the data sets. An unsupervised

learning model (here a mixture of Gaussians through

the AutoClass system) will find the hidden similarities

in the data. However, not all resulting classes were

meaningful to the researchers. In the unsupervised

learning and data mining areas of research, it is well

known that new knowledge is generated only from the

interaction between computational models and the

knowledge of the experts in the corresponding field.

Therefore in the metaclassification step, we selected

the Fourier model having a minimum number of

harmonics that fit our data subjective to the following

two constraints:

(I) The shape categories must be distinguishable by

human eye because plant biologists and agronomists

must be able to distinguish fruit shapes without relying

on scanned and computer-analyzed images. Therefore,

too subtle shapes which were distinguishable only

through a computer algorithm were merged together.

(II) The final set of shape categories must contain

long, oxheart, flat, obovoid, round, and ellipsoid

categories.

These basic shapes are obvious to the tomato

experts and have been documented previously (IPGRI

1996; Rodriguez et al. 2011; UPOV 2001).

Once the optimal number of harmonics was deter-

mined, the AutoClass classification with the lowest

error as defined in Eq. (3) was selected. Further,

manual evaluation of the resulting shape categories

(visualized as explained above) and merged those that

were indistinguishable by the human eye. This last

step is necessary because the final number of shape

categories will be used by plant biologists and

agronomists, and a distinguishable set of shapes is

desired for this purpose.

Finally, the variance within each final shape class

was evaluated. We denote by vark(j) the variance per

column j within the class k computed as

varkðjÞ ¼ 1

Ckj j � 1

XCkj j

i¼1

s
j
i ðjÞ � SkðjÞ

� �2 ð4Þ

1. Extract morphometric data (i.e. contour points)

2. Compute elliptic Fourier and shape descriptors

3. AutoClass Bayesian clustering of 
shape descriptors

5. Shape visualization, metaclustering, and class-variance evaluation

4. Evaluate clustering performance (error)

Fig. 1 Computational steps used to derive shape categories

from the morphometric data of the fruit boundary. For step 1,

Tomato Analyzer was used (Rodriguez et al. 2010). MATLAB

7.9 was used to implement the algorithms from steps 2, 4, and 5.

For step 3 we used the AutoClass Bayesian clustering system

(Achcar et al. 2009)
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with k ¼ 1;K, and j ¼ 1; 2 � H � 1.

Then the overall class variance was obtained from

Eq. (5). In other words, the variance within each class

k is computed as the sum of the variances per each

dimension.

vark ¼
X2H�1

j¼1

varkðjÞ with k ¼ 1;K ð5Þ

Figure 1 shows the five steps taken to derive the

final classification.

Analysis of environmental influence on number

of fruits per shape class

To evaluate the influence of the environment on fruit

development in the different shape classes, we

conducted a balanced one-way analysis of variance

(ANOVA) to compare the means of independent

samples containing independent observations. This

analysis returned the p value under the null hypothesis

that all samples are drawn from populations with the

same mean.

Results

Classification of tomato fruit based on contour

morphometric data

To initiate the identification of the shape classes, we

first sought to identify the optimum number of

harmonics for the clustering of the morphometric

contour data. In general, the first harmonic terms in the

Fourier series describe global shape, and the sub-

sequent terms in the series model the finer curvatures

of a contour. When using H = 5, 20 classes were

distinguished of which many were variations of the

round and ellipsoid shape classes (Fig. 2; supplemen-

tal Fig. 1). We attributed this redundancy to the

manner in which AutoClass operates in a 9-dimen-

sional space: the use of 5 harmonics leads to 9 (2 9 5-

1) shape descriptors which were generated for each of

the 784 tomato fruits. The 784 9-dimensional data

points were more uniformly distributed than in a larger

space. For H = 30, AutoClass used 59 (2 9 30-1)

shape descriptors for each of the 784 examples

resulting in only eight shape classes because fewer

Gaussians were needed to cover the data

(supplemental Fig. 2). However, for H = 30, the

oxheart and long classes were merged (see shape class

8 in supplemental Fig. 2) which violated our con-

straint (II) since both are valid shape classes that

should remain distinct. Thus by using too many

harmonics, distinct shapes that were detected by the

human eye were not discerned anymore.

The minimum number of harmonics that best

modeled the contour morphometric data while still

subjected to constraints (I) and (II) was found to be

H = 20, resulting in ten shape classes (Fig. 3a). For

all other cases (H = 5, 10, 15, 25, 30) one or both of

the two constraints were violated (supplemental

Figs. 1, 2). AutoClass is a stochastic unsupervised

learning method, and therefore, different runs with the

same data may result in slightly different classifica-

tions each time. For instance, for different runs of the

H = 20 model three different sets of results consisting

of 10, 11, and 12 shape classes are produced. Their

respective corresponding errors obtained using Eq. (3)

are 1.31, 1.61, and 1.54. Since the lowest error was

achieved for 10 shape classes, this model was selected

for the metaclustering step.

At the metaclustering step (a necessary step after

unsupervised clustering), the human expert evaluates

the 10 shape classes and incorporates additional

knowledge. As briefly discussed in the Materials and

methods section, this step is necessary because the

unsupervised learning techniques cluster data accord-

ing to mathematical models. However, it might be that

not all the resulting clusters are useful and practical.

By inspecting the shape classes in Fig. 3a the human

Fig. 2 Establishing the optimum number of harmonics. The

number of harmonics is plotted as a function of the number of

clusters obtained. Using the morphometric data of the tomato

fruit, H = 5 resulted in 20 clusters whereas H = 30 resulted in

eight clusters
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Fig. 3 a Ten classes

obtained for H = 20. Since

class 1 and 5 look similar to

the human eye (they are both

round shaped) they were

merged giving the final nine

classes. b The final nine

classes obtained for H = 20

after the metaclustering

step. These nine classes are

distinguishable by the

human eye and correspond

to 1: round; 2: rectangular;

3: ellipsoid; 4: flat; 5:

obovoid; 6: oxheart; 7: long

rectangular; 8: heart; 9:

long. c Representative fruit

images of the H = 20 and 9

resulting classes. Labeled as

1–9: 1 = round;

2 = rectangular;

3 = ellipsoid; 4 = flat;

5 = obovoid; 6 = oxheart;

7 = long rectangular;

8 = heart; 9 = long
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expert easily identified class 4 as flat, class 6 as

obovoid, class 7 as oxheart, class 9 as heart, class 10 as

long, class 8 as long rectangular, class 3 as ellipsoid,

and class 2 as rectangular. However, it was difficult to

visually discern class 1 from class 5 (Fig. 3a). This

implied that these two shape classes could be merged,

as all other classes were visually distinct. This

metaclustering step was also consistent with constraint

I which emphasizes that the final shapes must be

distinguishable by human eye. More importantly, the

cumulated error for the resulting nine shape categories

decreased further from 1.31 to 1.27. These final 9

categories largely corresponded to those developed

previously (Rodriguez et al. 2011), except that the

contour morphometric analysis identified a new cat-

egory, namely ‘‘long rectangular’’ which was derived

from the original rectangular class (Fig. 3b; Table 1).

This new category was also proposed recently using

attribute analysis (Cao 2012). The ‘‘long rectangular’’

category represented 7.5 % of the analysed fruit (60 of

784), suggesting that this shape occurs quite fre-

quently in the tomato germplasm. The tomato fruits in

Fig. 3b are assigned by our method to the following

categories: class 1 as round; class 2 as rectangular;

class 3 as ellipsoid; class 4 as flat; class 5 as obovoid;

class 6 as oxheart; class 7 as long rectangular; class 8

as heart; class 9 as long. The uneven distribution of

fruit numbers in each shape class and the high number

of fruit in the ‘‘round’’ class (Table 1) was due in part

to the fact that several tomato varieties were initially

classified as rectangular while they carried fruit of a

round shape (supplemental Table 1).

Fruit shape and number variability in the contour

morphometrics-defined classes

We determined whether certain shape categories were

more variable than others by using Eq. (5) (Table 1).

The categories with the largest variation were the

oxheart and long, and to a lesser extent the flat and

obovoid classes. The number of fruit in the long

category was relatively low, due to the fact that only

three cultivars from this class were grown which may

explain the high variation observed (supplemental

Table 1). Varying degrees of obovoid fruit were also

noted such that some fruits were very strongly pear

shaped and others were weakly pear shaped which

would explain the large error associated with this

category. The rectangular category exhibited the

lowest amount of variability, further implying that it

was critical to separate the rectangular from the long

rectangular class.

To evaluate whether certain shape classes produced

similar numbers of fruit under different environmental

conditions, we ran a one-way ANOVA for the nine

shape classes relative to the three growing locations in

Ohio, North Carolina, and New York. Because some

classes were much larger than others, we normalized

the data relative to each class prior to the ANOVA.

The analysis showed a significant difference

(p = 0.0205) in fruit number per location indicating

that more Ohio-grown fruit were analysed (supple-

mental Fig. 3). Further insights into whether the

difference in fruit number was associated with certain

shape categories indicated that the number of fruit in

the flat and oxheart category was lower in North

Carolina whereas the number of fruit in the long, long

rectangular and obovoid category was lower in New

York compared to the other locations. This could be

due to environmental factors such that not enough

fruits were ripe (cool summer), were malformed (those

wedged between two stems or laying on the ground),

or were damaged (animal or bird damage) to be

included in this study. This notion was consistent with

the shape variability analysis that showed higher error

and variance in the flat, long, obovoid and oxheart

categories (Table 1). The most robust shape classes

that featured similar numbers of fruit across the three

locations were ellipsoid, heart, and round categories

(supplemental Fig. 3).

Comparisons between manual cultivar and single

fruit morphometric classification

The classification of tomato fruit shapes was similar

whether conducted manually or computationally

(Fig. 3b) (Rodriguez et al. 2011). Based on our data

and our constraints the types of shapes formed by

tomato fruit are largely delimited to the 9 defined

categories. We next sought to determine how well the

varieties used in this study conform to one or another

shape class. Does the original variety classification fit

with the classification of the fruit based on contour

morphometric analysis? Do all fruit of a given variety

classify in the same shape category? The varieties that

conformed the least to their assigned category were

those that were initially classified as rectangular and

ellipsoid (Table 2, column 1). Fruit from only 21 and
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34 % of the rectangular and ellipsoid varieties

respectively, were categorized in the corresponding

classes based on contour morphometric data analysis.

The most uniform varieties were those that were

initially classified as flat, long, obovoid and round

(with 78–88 % fit). This may be due to the fact that the

latter classes are easily discerned by eye and by certain

Tomato Analyzer attributes: fruit shape index, prox-

imal eccentricity and widest width position which

were used to facilitate the original variety classifica-

tion done manually by experts (Rodriguez et al. 2011).

To determine whether certain tomato varieties

should be reclassified or whether they carry fruit that

is highly variable in shape, we evaluated those that

conformed poorly with respect to their initial classi-

fication. Based on the morphometric computations

performed in this study, four of the eight varieties

originally categorized as ellipsoid should be reclassi-

fied as rectangular because the largest group of the

fruit (in this case 50 % or more) from those varieties

conform to the rectangular class (supplemental

Table 1). Conversely, four of the five varieties initially

classified as rectangular should be reclassified: three to

the round category and one to the long rectangular

category. For other shape categories from the original

study, no reclassification is required except for the

heart variety LYC2406 to be reclassified as round, and

the obovoid variety LYC1918 to be reclassified as

ellipsoid (supplemental Table 1).

After reclassification of the varieties whose fruit did

not conform to the original classification, the fit

increased clearly except for the round class (Table 2

columns 2 and 4). This may be due to the inclusion,

after reclassification, of the M82 variety that carries

more variably shaped fruit than most other varieties

that are classified as round. The largest improvement

in uniformity of classification was found for the

reclassified rectangular and ellipsoid classes, which

improved from 21 to 64 % and from 34 to 59 %

respectively (Table 2).

For each computationally defined shape category,

certain varieties carry similarly shaped fruit that

conform well to a single shape category. The best

performing category in this regard is the obovoid,

where LA0330 (C27), LYC449 (C29), and Yellow

Pear (C30) produced 100 % obovoid fruits (Table 2,

column 5). Except for LYC438 (C9), none of the other

varieties produced fruit that were 100 % in the same

shape category. However, many varieties performed

quite well and produced fruit that were largely

classified in one shape or another category. For

example, in the flat category, five out of six varieties

produced only flat fruit with the exception of one

(T764, T864, Goliath) or two (T954) fruit from that

variety (supplemental Table 1).

Even though all varieties were classified into a single

shape category, the fruits collected from some varieties

fell into three or more shape categories. Collectively,

the worst performing classes were the long rectangular

and the oxheart categories where nearly all varieties

produced fruits that could be classified in three or more

categories (Table 2, column 4; supplemental Table 1).

The best performing classes were the flat and obovoid

categories where only one or no variety produced fruits

in more than two shape categories.

Discussion

In this study, we used contour morphometric data

obtained from scanned longitudinally cut fruit. The

analysis showed that the variation is largely confined

to nine shape categories which are near-identical to the

previously defined categories (IPGRI 1996; Rodriguez

et al. 2011; UPOV 2001). The morphometric data

obtained from the Tomato Analyzer application com-

bined with the Bayesian analysis using AutoClass

provided a classification scheme that allowed for more

uniform separation of fruit and varieties into defined

shape categories than visual inspection by experts.

Therefore, this approach provides a more useful tool to

evaluate variety uniformity and classification for

tomato and other fruits and vegetables.

Classification of shape and variability within a

shape category were not always correlated. For

example, variability was high in flat and obovoid,

yet varieties that feature fruit with those shapes often

conformed very highly to the class (Tables 1, 2). This

suggests that those fruit are easily classified into those

categories but that shape is not entirely uniform. On

the other hand, oxheart shapes showed high variability

and also most varieties classified as oxheart featured

more than two fruit shapes. In this case, the oxheart

fruit is variable and the corresponding varieties are

difficult to classify.

Certain varieties carried fruit that fit in only two

shape classes and for which the lowest class contained

four or more fruit. The rectangular variety T1355
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carried fruit that was rectangular or round; the round

variety UPV24629 carried fruit that was round or

rectangular; the ellipsoid variety UPV24514 carried

fruit that was ellipsoid or rectangular; the flat variety

T1121 carried fruit that was flat or round; the oxheart

variety Orange Strawberry carried fruit that was

oxheart or flat. Thus some shapes like round and

rectangular appear to some extent to be interchange-

able. This finding suggests that certain accessions

produce a shape that is intermediate of the nine defined

shape classes perhaps due to the effect of modifier

genes. Although most varieties produce fruit that fall

in one or a few categories, LYC2406 is most unusual

since it produced fruit that conforms to six out of nine

categories (supplemental Table 1).

The data support the previous conclusion that

OVATE controls obovoid, long rectangular and ellip-

soid shapes (supplemental Table 1) (Rodriguez et al.

2011). Also, the effect of LC and FAS on flat and

oxheart shape is clearly demonstrated as is the effect of

SUN on long and oxheart. The lc mutation is found in

round as well as flat, long and oxheart tomatoes,

suggesting that the increase in locule number does not

always lead to a change in overall shape. We did not

perform statistical analysis regarding the effects of the

four fruit shape genes on uniformity because of

relatively low numbers. However, the data suggest

that neither fruit shape gene leads to increased

variability per cultivar or better uniformity (supple-

mental Table 1). Instead the data suggest there are a

number of loci that modify the effect of the fruit shape

genes. For example, Spitz produced ellipsoid, obovoid

and oxheart fruit in addition to long. Howard German,

carrying the same fruit shape alleles as Spitz, produced

17 long and only one obovoid fruit. In addition to

genetic modifiers, this suggests that Howard German

may carry a ‘‘uniformity’’ gene that is not present in

Spitz. In all, our research demonstrates the usefulness

of contour morphometric analysis and modelling to

classify tomato and other fruits, and to identify

varieties with high and low variability within and

among plants of the same cultivar.
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