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5URGI, INRA, Université Paris-Saclay, 78026 Versailles, France
6Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
7Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
8Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
9Horticultural Sciences, Plant Innovation Center, University of Florida, Gainesville, FL 32611, USA
10Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
11Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
12Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA
13Boyce Thompson Institute, Ithaca, NY 14853, USA
14Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
15Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
16Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
17Department of Horticulture, University of Georgia, Athens, GA 30602, USA
18Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
19Present address: Center for Integrative Genomics, University of Lausanne, Lausanne 1005, Switzerland
20Present address: Inari Agriculture, Cambridge, MA 02139, USA
21These authors contributed equally
22Lead Contact

*Correspondence: mschatz@cs.jhu.edu (M.C.S.), lippman@cshl.edu (Z.B.L.)

https://doi.org/10.1016/j.cell.2020.05.021
SUMMARY
Structural variants (SVs) underlie important crop improvement and domestication traits. However, resolving
the extent, diversity, and quantitative impact of SVs has been challenging. We used long-read nanopore
sequencing to capture 238,490 SVs in 100 diverse tomato lines. This panSV genome, along with 14 new refer-
ence assemblies, revealed large-scale intermixing of diverse genotypes, as well as thousands of SVs inter-
secting genes and cis-regulatory regions. Hundreds of SV-gene pairs exhibit subtle and significant expres-
sion changes, which could broadly influence quantitative trait variation. By combining quantitative genetics
with genome editing, we show how multiple SVs that changed gene dosage and expression levels modified
fruit flavor, size, and production. In the last example, higher order epistasis among four SVs affecting three
related transcription factors allowed introduction of an important harvesting trait in modern tomato. Our find-
ings highlight the underexplored role of SVs in genotype-to-phenotype relationships and their widespread
importance and utility in crop improvement.
INTRODUCTION

Phenotypic variation in crop plants is shaped by genetic variation

from their wild ancestors, as well as the selection and mainte-

nance of collections of mutations that impact agricultural adap-
tations and human preferences (Meyer and Purugganan, 2013;

Olsen and Wendel, 2013). The majority of this variation is quan-

titative, and now more than ever, a major goal of genetics is to

identify and understand how specific genes and variants

contribute to quantitative trait variation. In particular, this
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knowledge is necessary for designing and engineering favored

alleles in crop improvement, enabled by genome editing (Chen

et al., 2019; Rodrı́guez-Leal et al., 2017; Wallace et al., 2018).

Although high-throughput short-read sequencing accelerated

the discovery of natural genetic variants among diverse germ-

plasm of major crops, it has also introduced an unavoidable

bias: characterized variants are disproportionately skewed to-

ward single-nucleotide polymorphisms (SNPs) and small indels

(De Coster and Van Broeckhoven, 2019). However, decades of

research have shown that structural variations (SVs) (large dele-

tions, insertions, duplications, and chromosomal rearrange-

ments) are important in plant evolution and agriculture, affecting

traits such as shoot architecture, flowering time, fruit size, and

stress resistance (Lye and Purugganan, 2019). Compared to

SNPs, SVs can cause large-scale perturbations of cis-regulatory

regions and are therefore more likely to quantitatively change

gene expression and phenotypes. SVs can also modify expres-

sion levels by directly altering gene copy number. However,

despite their importance, identifying SVs with short-read

sequencing is notoriously difficult and unreliable, leaving the

vast majority of SVs poorly resolved and their molecular and

phenotypic impacts largely hidden (Ho et al., 2020; Sedlazeck

et al., 2018a).

High-throughput Oxford Nanopore Technologies (ONT)

long-read sequencing now enables a broad survey of popula-

tion-scale SV landscapes. Such resources that capture the di-

versity of SVs, in combination with expression profiling and

genome editing, immediately allow for the direct interrogation

of the molecular and phenotypic consequences of SVs. Here,

we present the most comprehensive panSV genome for a ma-

jor crop and study its significance in evolution, domestication,

quantitative genetics, and breeding. We used ONT long-read

sequencing to identify SVs from a collection of 100 diverse

wild and domesticated tomato accessions. Tomato, in addi-

tion to its agricultural and economic importance, has exten-

sive genetic resources, well-described phenotypic diversity,

and efficient genome editing, making it an ideal system to

investigate the significance of SVs in both fundamental plant

biology and agriculture. Our data provided continuous long-

range information that allowed for the sequence-resolved

inference of more than 200,000 SVs, the majority being trans-

posons and related repeat sequences. Patterns of SV distribu-

tion revealed extensive admixture and population-scale intro-

gressions. RNA sequencing showed that gene expression is

widely impacted by SVs affecting both coding and cis-regula-

tory regions. Establishing high-quality de novo genome as-

semblies for 14 selected genotypes allowed us to resolve

hidden genomic complexity involving SVs. To demonstrate

the value of this panSV genome, we directly linked these com-

plex alleles with multiple domestication and improvement

traits affecting fruit flavor, size, and productivity. For two of

these traits, modest changes in expression originated from

gene copy number variation, and we used CRISPR-Cas9

genome editing to demonstrate causal quantitative relation-

ships between gene dosage and phenotype. Our work un-

covers the prevalence and importance of SVs in plant ge-

nomes and demonstrates the underexplored roles of SVs in

trait variation.
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RESULTS

Long-Read Sequencing of 100 Tomato Accessions
Establishes a PanSV Genome
To deeply survey the landscape of natural structural variation in

tomato, we collected long-read sequencing data from a repre-

sentative population-scale tomato panel (Figure 1A; Table

S1A). To this end, we first used available short-read sequencing

data to call SVs from over 800 tomato accessions and then

applied the SVCollector algorithm to optimally select 51 diverse

modern and early domesticated samples that maximize SV di-

versity (Sedlazeck et al., 2018b). We then separately selected

an additional 49 wild species and modern accessions that are

used by tomato research and breeding communities (Table

S1A). Our final set of 100 accessions captures phylogenetic di-

versity spanning the closest wild relatives of domesticated to-

mato (S. pimpinellifolium [SP], S. cheesmaniae [CHE], and

S. galapagense [GAL]), early domesticated forms (S. lyc. var. ce-

rasiforme [SLC]), and ‘‘vintage’’ cultivars and modern varieties

(S. lycopersicum, [SLL]; Figures 1A, S1A, and S1B; Table S1B).

For each of the 100 accessions, we used ONT long-read

sequencing to generate a minimum of 403 genome coverage,

achieving a total of 7.77 Tb of long-read data with an average

read length N50 of 19.6 kbp (Table S1C). Reads were aligned

to the recently released SL4.0 reference genome (Heinz 1706,

SLL) with NGMLR, and SVs were called with Sniffles (Figures

S1C and S1D; Hosmani et al., 2019; Sedlazeck et al., 2018a).

We then filtered, sequence resolved, and merged all 100 sets

of SV calls, revealing 238,490 total SVs (defined in this study

as >30 bp) that comprise the most comprehensive sequence-

resolved panSV genome in plants (see STAR Methods). Impor-

tantly, we confirmed that the majority of these variants would

not have been revealed using solely short-read sequencing

data (Figure S1E).

Individual accessions had between 1,928 and 45,840 SVs,

with the wild SP, GAL, and CHE accessions harboring the

most structural variation relative to the Heinz reference genome

(Figure 1B). Insertions and deletions were the most common SV

type, though we also found dozens to hundreds of inversions,

duplications, and translocations in all samples. SVs are with

respect to the reference genome and do not necessarily reflect

underlying evolutionary context. Clustering of the SV presence/

absence matrix revealed a structure that mirrored the larger

SNP-based tomato phylogeny, with accessions clustering within

their known taxonomic groups (Figure 1C). Interestingly, the SLL

‘‘cherry’’ variety Sweet100 grouped with the SLCs, and the only

two processing cultivars, M82 and EA02054, form a distinct

group from the SLLs, suggesting admixture. Comparative anal-

ysis of the long-read SVs showed that SP and SLC have more

SV diversity compared to SLL, consistent with the loss of genetic

variation during the domestication and improvement of tomato

(Figures 1D and S1F; Aflitos et al., 2014; Lin et al., 2014). This

analysis also indicated that, even sequencing 100 accessions,

many SVs remain to be discovered (Figure 1E). Consistently,

themajority of SVs are singletons, or are otherwise rare, although

tens of thousands of SVs are common (>5% detection fre-

quency; Figure 1F). We evaluated SV length distribution, which

showed that most SVs were relatively small: 30.5%: 30–50 bp;
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Figure 1. The Tomato panSV Genome

(A) SNP-based phylogenetic tree based on short-read sequencing of more than 800 tomato accessions. Major taxonomic groups are marked by colored lines

along the circumference. Colored dots indicate a subset of the 100 accessions selected for long-read sequencing.

(B) Stacked bar graph showing SV number and type from the 100 accessions. Colored dots indicate the taxonomic group of each accession, corresponding to

colors in (A).

(C) Hierarchical clustering dendrogram of the SV presence/absence matrix across the 100 accessions, with colors corresponding to (A). Bold branches and

names highlight an outgroup of two SLL processing tomato accessions.

(D) SVCollector curves of SVs in the three major taxonomic groups. The ‘‘greedy’’ algorithm determines the order of accessions and depicts the cumulative

number of SVs as a function of the number of accessions included.

(E) Graph showing the number of SVs (y axis) in ‘‘no more than’’ or ‘‘at least’’ the number of accessions indicated on the x axis.

(F) Histograms of detection frequencies for different SV sizes.

(G) Histogram of SV sizes for insertions and deletions.

(H) Annotation of the panSV genome. The proportion of repeat types for all insertions and deletions annotations is shown in stacked bar graphs. ‘‘Count’’ shows

the proportion of individual repeat annotations, and ‘‘bp’’ shows the proportion of cumulative repeat (not indel) sequence length. ‘‘Other’’ refers to other repeat

types. Only indels at least 100 bp in size were considered.

See also Figure S1.
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30.5%: 50–200 bp; and 39%: >200 bp (Figure 1G). We note that

our method has limited ability to detect larger insertions,

because, unlike deletion calling, such detection is bounded by

read length (see STAR Methods). SVs are typically composed
of, or generated by, transposons and related repeats (Audano

et al., 2019; Fuentes et al., 2019), and annotation of our panSV

genome showed 84% of deletions and 76% of insertions larger

than 100 bp match at least one repeat. Retrotransposon
Cell 182, 145–161, July 9, 2020 147
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sequences, especially from Gypsy and Copia elements, are the

most prevalent among the annotated SVs (Figure 1H).

FourteenNewHigh-Quality TomatoReferenceGenomes
To supplement the panSV genome with additional genomic re-

sources, weselected14diverse accessions for genomeassembly

and annotation (Table S2D). Combining long- and short-read

sequencing data, de novo assemblies using the MaSuRCA hybrid

assembler yielded an average contig N50 of 1.9Mbp (Figures S2A

and S2B; Table S2A; see STAR Methods; Zimin et al., 2017).

Reference-guided scaffolding with RaGOO produced chromo-

some-scale pseudomolecules that contained, on average, a sin-

gle copy of 96% of complete benchmarking universal single-

copy orthologs (BUSCO) genes (Figures S2C–S2P; Table S2B;

Alonge et al., 2019; Simão et al., 2015). Repeats were annotated

using REPET, and genes annotations were ‘‘lifted over’’ from

reference annotations using geneLift (see STAR Methods; Flutre

et al., 2011). We used these new reference genomes (referred to

as ‘‘MAS2.0’’) to validate SVs in the same 14 accessions, of which

90% were also found in the assemblies (see STAR Methods).

Owing to the diversity of these assemblies, which represent mul-

tiple SP, SLC, and SLL accessions, we anchored 22% of recently

discovered ‘‘pan-genome’’ genes that are missing from the ITAG

reference annotation (Figures S2Q and S2R; Table S2C; Gao

et al., 2019). TheseMAS2.0 genomes were critical to link complex

SV loci with functional consequences shown below.

SV Distribution Reveals Extensive Admixture and
Introgression
The chromosomal distribution of SVs from our panSV genome

revealed several hypervariable genomic regions relative to the

Heinz reference shared among subsets of SLL accessions

(designated SV ‘‘hotspots’’; Figure 2A). Because SP accessions

have more structural variants than those of SLL, SV hotspots in

SLL could reflect admixture and introgression between wild

and domesticated accessions, which was previously partially

explored using SNPs (Aflitos et al., 2014, 2015; Sato et al.,

2012). Introgression is a common practice in tomato breeding,

through which disease resistance genes and other desirable

traits from wild donors are introduced into SLL breeding germ-

plasm (Aflitos et al., 2014). We found that SV hotspots in SLL

correlated with genomic regions that show high similarity with

SP and/or SLC based on the Jaccard similarity of SV content be-

tween accessions (Figures S3A–S3L; Tables S3A–S3L). For

example, multiple SV hotspots exist on chromosome 4, including

a 2-Mbp region common to all SLL accessions that corresponds

to a known unique introgression in the Heinz reference genome

(Figure 2A; Sato et al., 2012). Most SP accessions show a

decrease in SV frequency in this region, indicating these acces-

sions are closely related to the introgression donor. We also

found a large introgression block shared by five SLLs that oc-

cupies two-thirds of the chromosome (Figure 2B). Notably, two

of these accessions are M82 and EA02054, which also carry

large introgression blocks that span nearly all of chromosomes

5 and 11 (Figures 2A, S3E, and S3K), explaining their distinct

grouping in SLL and their relatively large number of SVs

compared to Heinz 1706, which is also a processing type (Fig-

ures 1B and 1C).
148 Cell 182, 145–161, July 9, 2020
Expecting that our panSV genome would illuminate how

breeding and introgression have shaped SV content, we exam-

ined 11 SLLs included in our 100 genomes from the University

of Florida (UFL) tomato breeding program, which has a well-

documented history of disease resistance gene introgression

(Scott, 1999a). The devastating fungal disease Fusarium wilt first

emerged in the 1930s, and the resistance genes I and I2 (from SP

donors) and I3 (from S. pennellii) against three races of this dis-

ease were successively introduced into UFL breeding material

between the 1930s and 1980s (Figure 2C; Bohn and Tucker,

1939; Scott and Jones, 1989; Strobel et al., 1969). Furthermore,

the Sm resistance gene against Grey leaf spot was introduced in

the 1950s (Walter and Kelbert, 1953). Molecular mapping and

gene cloning have shown that I and Sm are located on the oppo-

site arms from I2 on chromosome 11. The variants from our

panSV genome demonstrated overlapping introgressions from

multiple donors, including those contributing resistance to other

diseases (Foolad and Panthee, 2012), accounting for the large

introgression block in the UFL accessions (Figure 2D). Interest-

ingly, the modern breeding line Fla.8111B carries the I, I2, and

Sm resistance genes but lacks a large portion of this introgres-

sion, suggesting this region was later purged during selection.

The I3 introgression on chromosome 7 was introduced in the

1980s (Figure 2C). The modern breeding lines Fla.7481 and

Fla.7907B that carry I3 resistance show a 5-Mbp SV hotspot

with low similarity to SP and SLC at the I3 locus, consistent

with the donor being the distant green-fruited wild species

S. pennellii (Figure 2E). Interestingly, UFL lines lacking I3 resis-

tance have a 2-Mbp introgression from SP or SLC that first ap-

peared in the 1960s and overlaps the I3 introgression. The I3

introgression is negatively implicated with several horticultural

characteristics, including reduced fruit size and increased sensi-

tivity to bacterial spot (Hutton et al., 2014; Li et al., 2018; Scott,

1999b). The earlier introduced SP introgression may have pro-

vided tolerance to bacterial spot or benefitted other traits, as is

likely for many other putative SP or SLC introgressions revealed

by our panSV genome (Figures S3A–S3L; Tables S3A–S3L). The

large number of SVs from wild species introduced in breeding

could have broad functional consequences.

SVs Associated with Genes Have Widespread Impacts
on Expression
SVsmay influence the expression of nearby genes by altering the

sequence or copy number of a gene or by changing the compo-

sition or position of cis-regulatory sequences (Chiang et al.,

2017; Yang et al., 2019). We explored this relationship with the

comprehensive catalog of SVs across our tomato panSV

genome. Candidate SVs that could potentially impact gene

expression were abundant in our collection. Nearly 50%

(112,114) of SVs overlap genes and/or flanking regulatory se-

quences (±5 kbp of coding sequence), and among 34,075 anno-

tated genes, 95% have at least one SVwithin 5 kbp of coding se-

quences across the 100 genomes, with the majority found in cis-

regulatory regions (Figures 3A and 3B). To explore the impact of

SVs on gene expression, we performed 30 RNA sequencing

(RNA-seq) on three tissues (cotyledons, roots, and apical meri-

stems) for 23 accessions that capture 44,358 gene-associated

SVs. We evaluated a total of 21,156 SV-gene pairs and found
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Figure 2. SV Distribution Reveals Large-Scale Admixture and Introgression between Wild and Domesticated Genotypes

(A) Heatmap (top) showing SV frequency in 1-Mbp windows (columns) of chromosome 4 relative to the reference genome. Accessions (rows) are grouped by

taxonomic group (colored bars). Dotted colored lines mark three notable regions: black, a large SV hotspot for 5 SLLs; red, a small hotspot shared by most UFL

SLL lines; and yellow, a SP group with reduced SV frequency, reflecting a small SP introgression in the reference genome. Circos plot (bottom) depicts genome-

wide SV frequency for five notable accessions. Rings depict line plots showing the SV number in successive 1-Mbp windows (y axes are not shared between

rings). Chromosomes 4, 5, 7, and 11 are highlighted to show regions of high SV frequency.

(B) Heatmaps showing admixture and introgressions on chromosome 4 measured by Jaccard similarity between accessions of SLL and SP (top) and SLC

(bottom) in the same row order as (A) (top). For each 1-Mbp window, the SVs for a given SLL accession are compared to the SVs for all SP (top) or SLC (bottom)

accessions and the maximum Jaccard similarity is reported. Windows with fewer than 5 SVs in the SLL set are excluded and colored gray. Black and red dotted

regions correlate with marked SV hotspots in (A) (top).

(C) Timeline of UFL fresh market variety release over the last century. Approximate periods of introgression of key disease-resistance genes are shown in red,

along with major donor genotypes for Fusarium wilt (I, I2, and I3) and gray leaf spot (Sm).

(D) Jaccard similarity for chromosome 11 between the UFL lines (ordered chronologically) and LA1589, the closest SP to this introgression. Locations of I, Sm,

and I2 are shown in red.

(E) The UFL varieties on chromosome 7 showing a small SP introgression in all but two accessions; Fla.7481 and Fla.7907B carry a unique SV hotspot (left) due to

introgression of the I3 resistance gene (red) from S. pennellii.

See also Figure S3.
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Figure 3. Gene-Associated SVs Impact Expression

(A) Stacked bar chart showing total counts of SVs overlapping different genomic features in major taxonomic groups. N represents the number of accessions in

each taxonomic group.

(B) Percentage of SVs overlapping different genomic features in 100 accessions. Each point is one sample. Fewer SVs are found within genes compared to

surrounding regulatory regions.

(C) Stacked bar charts showing numbers of differentially expressed genes affected by insertion, deletion, and duplication SVs overlapping coding sequences (left)

and regulatory regions (right; significance is defined as an adjusted p < 0.05). Differential expression was tested on common SVs in the 23 accessions used for

RNA sequencing (frequency between 0.2 and 0.8; see STAR Methods).

(D) ROC curves for the top three SV annotation types, with high AUROC (area under the receiver operating characteristics) scores across the three tissues

demonstrating the ability to identify genes containing SVs using changes in expression across the accession split. The AUROC is specified within the ROC curve

in each case. The steep rise of the curves in the top panel corresponds to a near-perfect identification of a large fraction of the genes containing SVs based on

differential expression. CDS, coding sequence.

(E) Differential expression significantly predicts genes with SVs. Overall performance of using ‘‘SV splits’’ and differential expression to predict associated gene(s)

is shown (see STARMethods). Analyses are broken down into 9 categories across three tissues. Each category is defined based on SV type and relative position

to genes. Circle sizes and colors represent the significance of performance (�log10 p value) and themagnitude of AUROC, respectively. SV categories are ranked

in decreasing order of average AUC (area under the curve) across the three tissues. Note that the significance of performance for each SV type is enhanced by the

number of annotated SV-gene pairs (for example, p < 1 3 10�4 for z16 duplications, although p < 1 3 10�8 for z468 insertions in introns).

(legend continued on next page)
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hundreds of significant expression changes (Figure 3C; Tables

S4A and S4B; see STAR Methods). Nearly half of the SVs

affecting coding sequences (deletions of coding sequence

[CDS] start, deletions of exons, and duplications) are signifi-

cantly associated with differences in expression, with many sub-

stantially reducing or eliminating expression (Table S4). In regu-

latory regions, 1,534 SV-gene pairs (7.3%) showed significant

differential expression across all tissues, and overall, these dif-

ferences were subtler compared to SVs in coding regions

(mean log2 fold change 1.36 and 2.47, respectively; Figure S4A).

Knowing that a substantial fraction of population-scale

expression variation is explained by cis-eQTL (Battle et al.,

2017; Kawakatsu et al., 2016), we next formulated a classifica-

tion task that uses changes in gene expression to predict the

presence of a nearby SV (see STAR Methods; Figure S4B).

This classifier complements standard fold-change measure-

ments among known SV-gene pairs, and its performance can

quantify the extent to which global expression changes are asso-

ciated with SVs. Notably, this test is robust to population struc-

ture because global changes in expression or confounding vari-

ants can only serve to weaken any one-to-one relationship

between gene expression variation and the existence of a nearby

variant.

Broadly, differential expression significantly predicts genes

with associated SVs (Figures 3D, 3E, and S4C–S4E; Tables

S4C–S4L). As expected, this classifier performs best on the cod-

ing sequence SVs (e.g., deletions of exons, apex tissue expres-

sion, area under the receiver operating characteristics [AUROC]

> 0.78, and false discovery rate [FDR] < 0.05), as reflected by the

sharp initial rise in receiver operating characteristic (ROC) curves

(Figure 3D). The strength of this signature indicates that indirect

effects (e.g., trans regulation) do not dominate the observed rela-

tionship and also demonstrates the high accuracy of our variant

calls. Importantly, we also observe subtle but significant effects

of regulatory SVs on gene expression (e.g., deletions overlap-

ping 30 flanking sequence, apex tissue expression, AUROC >

0.53, and FDR < 0.05). The AUROC captures the individual cis-

regulatory effect size, which is small on a per variant basis. How-

ever, in aggregate, these variants have a large impact on expres-

sion variation (Figure 3E), suggesting they globally shape expres-

sion profiles. Overall, our results show that SVs can impact gene

expression in both substantial and subtle ways and that many

such variants in our panSV genome may be functionally relevant

(Figures 3F and S4F).

New Reference Genomes Resolve Multiple Haplotypes
for the Smoky Volatile Locus
Our panSV genome, new MAS2.0 assemblies, and expression

dataset could help to reveal genes and variants underlying

quantitative trait variation that has been masked by hidden

genomic complexity. Many fruit aroma volatile QTLs that

contribute to flavor have been identified through genome-
(F) Volcano plots for four regulatory SV-gene pair examples with the highest AUR

(marked in orange circles), compared to all expressed genes (black dots). Addition

are computed across two groups of accessions (with and without the indicated SV

are not drawn to scale. Distances between genes and SVs are shown.

See also Figure S4.
wide association study (GWAS), but only a few have been func-

tionally characterized (Tieman et al., 2017; Zhu et al., 2018).

One such QTL involves the metabolically linked volatiles guaia-

col and methyl salicyate, whose ‘‘smoky’’ or ‘‘medicinal’’ fla-

vors negatively influence consumer appeal. A previous GWAS

identified a candidate gene E8 (Solyc09 g089580), encoding a

putative negative regulator of ethylene biosynthesis involved

in fruit ripening (Tieman et al., 2017). Although transcriptional

knockdown of E8 resulted in accumulation of guaiacol

and methyl salicylate, other volatiles were also modified.

Furthermore, no causal mutations were identified, likely due

to two large gaps flanking E8 in the reference genome at the

time (SL3.0).

A separate study found that mutations in the NON-SMOKY

GLYCOSYLTRANSFERASE1 (NSGT1) and NSGT2 paralogous

genes, which are physically close on chromosome 9, cause an

accumulation of guaiacol (Figure 4A; Tikunov et al., 2013).

Whereas NSGT2 shows little expression and is believed to be

non-functional, upregulation of NSGT1 during ripening converts

guaiacol to non-cleavable triglycosides, preventing guaiacol

volatilization (Tikunov et al., 2013). To investigate whether

NSGT genes could be linked to the smoky QTL, we inspected

the previous reference genome SL3.0 and found a partial

sequence of NSGT1 near the gap at the chromosome 9 GWAS

locus and another NSGT1 fragment at a second GWAS peak

on an unanchored contig (Figure 4B; Tieman et al., 2017).

Consistently, a recent short-read k-mer-based analysis also

linked the two smoky GWAS peaks and suggested hidden struc-

tural complexity (Voichek and Weigel, 2020). However, all these

studies failed to resolve this locus. Importantly, our new MAS2.0

assemblies not only filled the gaps flanking E8 with these two

NSGT paralogs but also further revealed coding sequence vari-

ants and SVs that are resolved into five haplotypes (Figures 4B

and 4C; see STAR Methods).

Haplotype I is likely ancestral with the NSGT1 and NSGT2

genes flanking E8. Although an NSGT2 coding sequence muta-

tion is found in all other haplotypes, haplotypes II and III have

intact NSGT1, with the latter carrying two copies of NSGT1 (Fig-

ure 4C). Finally, copy number and functional variation are

extended in haplotypes IV and V; haplotype IV has a 7-kbp dupli-

cation, including mutant nsgt2 that disrupted NSGT1, rendering

it non-functional, and haplotype V has a large 23-kbp deletion

that removes both NSGT1 and E8, leaving only a single mutated

copy of nsgt2 (Figure 4D).

These haplotypes, along with the previous characterization of

NSGT1 (Tikunov et al., 2013), suggest that multiple mutant al-

leles of nsgt1 are responsible for natural variation in guaiacol

(andmethyl salicylate) accumulation and the smoky flavor. Using

gene expression and metabolite data from fruits of more than

300 accessions (Tieman et al., 2017; Zhu et al., 2018), we tested

associations between functional (I, II, and III), coding sequence

non-functional (IV), and deletion non-functional (V) NSGT1
OC score highlight the extent of differential expression of SV-containing genes

al examples are presented in Figure S4F. p values and expression fold changes

). Data shown are for apex tissue. Exons (orange), UTRs (yellow), and SVs (red)
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Figure 4. New Reference Genomes Anchor Candidate Genes and Resolve Multiple SV and Coding Sequence Haplotypes for the ‘‘Smoky’’

Volatile GWAS Locus

(A) Schematic showing a key step of the metabolic pathway underlying the ‘‘smoky’’ aroma trait. During fruit ripening, activation of glycosyltransferase NSGT1

prevents release of smoky-related volatiles by converting them into non-cleavable triglycosides (top). nsgt1 mutations result in the release of the smoky volatile

guaiacol.

(B) Genomic resources used to resolve the GWAS locus for guaiacol (top) and summary of haplotypes (bottom). The published locus mapped to a region of

chromosome 9with one candidate gene andmultiple gaps and also to an unanchored contig with a fragment of anNSGT gene (top). MAS2.0 assemblies revealed

multiple haplotypes that include copy number variation for the NSGT1 and NSGT2 paralogs and loss-of-function mutations (bottom). A local assembly revealed

haplotype V (asterisk) (see STAR Methods).

(C) Schematics depicting the five resolved haplotypes. The assemblies andmajor taxonomic groups fromwhich the haplotypes were identified are shown below.

Red ‘‘X’’s mark coding sequence (CDS) mutations. Grey bars mark duplication in haplotype IV. The red rectangle marks a large deletion in haplotype V.

(D) PCR confirmation of the deletion in haplotype V. Primers (F1, F2, R1) are shown in (C).

(E) Quantification of NSGT1/2 expression by RNA-sequencing. Haplotypes are grouped according to functional NSGT1 (I, II, III), nsgt1 CDS mutation (IV), and

nsgt1 deletion (V) (see STAR Methods). Expression data are from pericarp tissue of ripe fruit (Zhu et al., 2018).

(F and G) Guaiacol content of fruits from a previous GWAS study (F) (Tieman et al., 2017) and a new GWAS analysis using a collection of 155 SP and SLC

accessions (G). Mutations in NSGT1 are associated with guaiacol accumulation. Accessions are grouped as in (E).

(H) Quantification of guaiacol and methylsalicylate content in an SLC x SLC F2 population segregating for the haplotype V 23 kbp deletion.

In (E–H), n represents sample size in each group. All p values are based on two-tailed, two-sample t tests.
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haplotypes and guaiacol accumulation (see STARMethods). Ac-

cessions carrying the mutant haplotypes IV and V, which

emerged early in domestication in the SLCs (Table S5A), ex-

hibited lower combined NSGT1/2 expression levels compared

to accessions with functional haplotypes, with no NSGT1/2

expression detected in the five accessions carrying the haplo-

type V deletion (Figure 4E; see STAR Methods). Consistently,

both mutant haplotypes accumulated more guaiacol, though

the effect from the rare haplotype V showed weak statistical sig-

nificance (Figure 4F). We validated these findings using a new

GWAS panel of 155 accessions comprised primarily of SP and

SLC genotypes (Razifard et al., 2020). Again, both nsgt1 coding
152 Cell 182, 145–161, July 9, 2020
and deletion mutation haplotypes accumulate significantly more

guaiacol than functional haplotypes (Figure 4G). Finally, we

generated an F2 population between two SLCs segregating for

haplotype V and functional NSGT1, which confirmed the dele-

tion, lacking both NSGT1 and E8, is associated with accumula-

tion of both guaiacol and methyl salicylate (Figure 4H). Together,

our results anchored two NSGT genes to the smoky GWAS QTL

and show that multiple nsgt1 mutations largely explain natural

variations of the smoky flavor. This example demonstrates how

our high-quality long-read genome assemblies can resolve com-

plex haplotypes and reveal causative variants for poorly under-

stood QTLs.
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The Fruit Weight QTL fw3.2 Resulted from a Tandem
Duplication of a Cytochrome P450 Gene
A substantial increase in fruit weight was a major feature of to-

mato domestication (van der Knaap et al., 2014). The genes

underlying five major fruit weight QTL have been identified,

with the responsible mutations being either SVs or SNPs

(Chakrabarti et al., 2013; Frary et al., 2000; Mu et al., 2017;

Muños et al., 2011; Xu et al., 2015). Among these is fw3.2,

which is strongly associated with a SNP in the promoter of

the cytochrome P450 gene SlKLUH, a known regulator of

organ size in multiple species (Anastasiou et al., 2007; Chak-

rabarti et al., 2013; Miyoshi et al., 2004). The promoter SNP

was proposed to account for higher (2- to 3-fold) SlKLUH

expression (Figure 5A), and transcriptional knockdown of

this gene results in smaller fruits, though a causative role for

the SNP was unclear.

Our panSV genome revealed an�50-kbp tandem duplication

at the fw3.2 locus containing three genes, including two iden-

tical copies of SlKLUH (designated fw3.2dup; Figure 5B).

Although SNPs in promoters can affect expression by modi-

fying cis-regulatory elements, we explored whether fw3.2dup

is the causative variant, with the hypothesis that an increase

in gene copy number explains the higher expression. In support

of this, our expression analyses showed that all three intact

genes within the duplication are expressed approximately

2-fold higher in accessions carrying fw3.2dup (Figures 5C and

S5A). To disentangle the effects of these variants on fruit

weight, we generated F2 populations segregating for fw3.2dup

but fixed for the promoter SNP and other known fruit weight

QTLs. Higher fruit weight co-segregated with the duplication

allele (Figures 5D and S5B). In contrast, there was no associa-

tion between the promoter SNP and fruit weight in F2 popula-

tions segregating only for the SNP (Figures S5C and S5D).

Our results suggested that the duplication carrying SlKLUH

could explain fw3.2 due to an increase in gene copy number

and therefore dosage. We tested this by CRISPR-Cas9 targeting

SlKLUH in the processing cultivar M82 (carrying fw3.2dup and

therefore four functional copies of SlKLUH) with multiple guide

RNAs (gRNAs). PCR genotyping and sequencing of independent

T0 plants showed large deletions and small indels in the target

sites. The majority of these plants, including three confirmed to

lack wild-type (WT) alleles, were much smaller than control

plants and had tiny inflorescences and flowers that were infertile

(Figures 5E and S5E).

Fortuitously, one fertile plant (slkluhCR T0-1) showed a

weaker phenotype from having both WT and mutant alleles,

allowing us to directly test how changes in SlKLUH dosage

affect fruit weight. To work in an isogenic background with

uniform cherry type fruits that allows for a robust assessment

of fruit size, we crossed the slkluhCR T0-1 with the SP acces-

sion LA1589. As LA1589 has only two copies of SpKLUH (Fig-

ure 5F), the M82 3 LA1589 F1 isogenic hybrids have three

gene copies of KLUH (2 copies SlKLUH and 1 copy SpKLUH).

These control F1 hybrids (group A) were compared with F1

progeny resulting from the cross between slkluhCR T0-1 and

LA1589 (see STAR Methods). Several F1 hybrid plants that in-

herited the Cas9 transgene produced small organs and were

infertile (group C), which we confirmed was due to inheritance
of mutated and further trans targeting of all KLUH copies (Fig-

ures S5F and S5G). Among F1 plants lacking the Cas9 trans-

gene, a subset inherited two mutated alleles of SlKLUH and a

single functional allele of SpKLUH (group B; Figures 5F, 5G,

and S5H). Notably, these group B plants produced 15%

smaller flowers and 30% smaller fruits compared to group A

plants (1 versus 3 functional alleles of KLUH; Figures 5H and

5I). Thus, our panSV genome and functional genetic dissec-

tion using CRISPR-Cas9 genome editing show that the dupli-

cation including KLUH, and the corresponding increase in

gene dosage and expression, underlies fw3.2.

Genetic Interactions Involving Four SVs Allowed
Jointless Breeding
We revealed thousands of genes with expression variation that

could be caused by SVs. These variants might have little or no

phenotypic consequences; however, many may be ‘‘cryptic,’’

having little or no effect on their own but causing phenotypic

changes in the context of other variants (Paaby and Rockman,

2014; Sackton and Hartl, 2016). The ‘‘jointless’’ fruit pedicel is

an important tomato harvesting trait that originated by different

mutations from wild and domesticated accessions (Soyk et al.,

2017). The jointless trait allows complete separation of fruits

from other floral parts and is caused by a transposon insertion

that eliminates functional transcripts of theMADS-box transcrip-

tion factor gene JOINTLESS2 (J2). A cryptic insertion in the

related ENHANCER OF J2 (EJ2) gene reduces functional tran-

scripts and causes excessive inflorescence branching with

reduced fruit production following introduction of the jointless

trait (Figure 6A). Breeders overcame this negative interaction

and restored normal inflorescences by exploiting two natural

‘‘suppressor of branching’’ (sb) QTLs that we designated sb1

and sb3 (Soyk et al., 2019). We recently showed that sb3 is an

83-kbp duplication that includes ej2w, which causes a dose-

dependent increase of weak allele expression that compensates

for the reduced functional transcripts (Figure 6A).

The cryptic sb1 locus is a partial suppressor of branching,

and our previous QTLmapping positioned sb1 to a 6-Mbp inter-

val on chromosome 1 (Figures 6B and 6C). We searched for

candidate genes and focused on two neighboring MADS-box

paralogs, TM3 (Solyc01 g093965) and SISTER OF TM3

(STM3) (Solyc01 g092950; Figure S6A). Notably, STM3 showed

approximately 2-fold higher expression in the branched

parental line (M82 j2TE ej2W) compared to the suppressed

parent (Fla.8924 j2TE ej2W; Figure S6B). There were no obvious

coding or regulatory mutations in this gene; however, the Heinz

4.0 reference genome has gaps in that area. Our MAS2.0 as-

semblies filled the gaps and revealed copy number variation

for STM3, with an extra copy of the gene in the branched parent

due to a near perfect 22-kbp tandem duplication (Figures 6D

and S6C). Consistently, genotypes with four copies of STM3

showed 2-fold higher expression compared to two copy geno-

types (Figure 6E).

To test whether lower dosage and expression from a

single STM3 gene is responsible for the sb1 QTL, we used

CRISPR-Cas9 to generate mutant alleles disrupting the

complex STM3-TM3 locus. A CRISPR construct with two

gRNAs gave small indel mutations in all copies of the identical
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Figure 5. The Fruit Weight QTL fw3.2 Resulted from a Tandem Duplication that Increased Expression of a Cytochrome P450 Gene

(A) Published mechanism for fw3.2 positing that a SNP in the promoter of the cytochrome P450 gene SlKLUH increased expression �2-fold, resulting in larger

fruits.

(B) SV analyses revealed a 50-kb tandem duplication at the fw3.2 locus that included SlKLUH (left). PCR validation of the duplication (right) is shown. Primers (F1,

F2, and R1) are labeled on the left. ‘‘No duplication’’ refers to the accession without this duplication, and ‘‘fw3.2dup’’ refers to the accession that carries the

duplicated copy of fw3.2 as shown by the PCR product across the duplication junction (F2 + R1).

(C) Expressions of genes within the fw3.2 duplication are �2-fold higher. Gene coordinates and the duplication region (top) and RNA-seq boxplots of duplicated

and flanking genes (bottom) are shown. Each point is one biological replicate from one accession (see STAR Methods). n, number of accessions.

(legend continued on next page)
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TM3/STM3 exon 2 (sb1CR-1), although a second construct with

four gRNAs deleted the entire locus (sb1CR-del; Figures 6F and

S6D). Both sb1CR-1 and sb1CR-del plants were slightly late

flowering, but their inflorescences were normal (Fig-

ure S6E). We then introduced each allele into the highly

branched M82 j2TE ej2w double mutants and identified j2TE

ej2w sb1CR-1 and j2TE ej2w sb1CR-del triple mutants from segre-

gating F2 populations. Importantly, all of these plants (0 func-

tional copies of STM3) showed practically complete suppres-

sion of branching compared to j2TE ej2w double mutants

(4 functional copies of STM3; Figures 6F, 6G, and S6F). More-

over, j2TE ej2w plants that were heterozygous for the CRISPR

alleles (2 functional copies of STM3) showed partial suppres-

sion of inflorescence branching, mimicking the effect of sb1

(e.g., Fla.8924; 2 functional copies of STM3; Figures 6F, 6G,

and S6F). Thus, a single-copy STM3, and the corresponding

lower gene expression, explains sb1.

Short-read-based genotyping of more than 500 accessions

spanning tomato taxonomic groups showed that the duplica-

tion of STM3 arose early in domestication, but the ancestral

single gene has remained common in tomato germplasm (Fig-

ures 6H and S6G; Table S5B). In fact, the majority of vintage

and modern fresh-market accessions have single-copy STM3,

indicating that a lower dosage and expression level provided

partial suppression of branching upon the introduction of

j2TE into lines carrying ej2w. The duplication of ej2w, and the

resulting increased expression of this weak allele, arose later

and was likely selected to achieve complete suppression of

branching. In support, all jointless fresh-market accessions

carry both sb1 (single-copy STM3) and sb3 (duplicated ej2w;

Figure 6I). In contrast, breeding for jointless in processing to-

mato accessions was achieved by selecting against ej2w (Fig-

ure 6I). Consistent with this, sb1 and SB1 (duplicated STM3)

are present at equal frequencies in processing tomato acces-

sions, maintaining cryptic variation in the context of inflores-

cence development (Figures 6I and 6J). Our analysis reveals

STM3 as a new regulator of tomato inflorescence develop-

ment, and the dissection of sb1 shows that the path of joint-

less breeding depended on four SVs affecting the expression

levels of three MADS-box genes and further illustrates how
(D) An SLC 3 SLC F2 population segregating for the fw3.2 duplication but fixed f

with the duplication.

(E) CRISPR-Cas9 mutagenesis of SlKLUH in the M82 background. SlKLUH gene

inflorescences (bottom) of slkluhCR T0 plants is shown. The three slkluhCR T0 pla

inflorescences, suggesting a null phenotype. Strong phenotypes were also obse

showed a weaker phenotype and was fertile, allowing a genetic test of dosage.

(F) Altering tomato KLUH gene dosage shows that copy number variation expla

crossing scheme used to test the phenotypic effects of altering tomato KLUH fun

and B are isogenic for M82 3 LA1589 genome-wide heterozygosity and differ on

group C effectively has 0 functional copies due to inheritance of the single insert

(G) Mutated slkluh alleles and the SpKLUH allele in genotypic group B. Red font

distinction of KLUH allele parent of origin. All SpKLUH sequences in genotypic g

(H) Decreasing tomato KLUH functional copy number reduces flower organ size

length (right) from all three genotypic groups are shown.

(I) Decreasing tomato KLUH functional copy number reduces fruit weight. Represe

andB are shown. Reducing tomatoKLUH copy number from three to one reduces

produce fruits.

Scale bars represent 1 cm in (E) and (H) and 2 cm in (I). In (H) and (I), N indicates p

tailed, two-sample t tests. See also Figure S5.
functional consequences of structural variation can remain

hidden.

DISCUSSION

Raising the Curtain on Structural Variation
Advancements in genome-sequencing technologies continue

to revolutionize biology by providing an increasingly compre-

hensive view of the genetic changes underlying phenotypic di-

versity. The recent development of high-throughput Oxford

Nanopore long-read sequencing has provided the opportunity

to rapidly reveal the breadth and depth of previously hidden

SVs in complex genomes and across populations (Beyter

et al., 2019). Taking advantage of the expansive genetic diver-

sity of wild and domesticated tomatoes, we sequenced a

collection of 100 accessions and resolved hundreds of thou-

sands of SVs. These SVs were shaped predominately by

transposons (Domı́nguez et al., 2020), are abundant across

all chromosomes, frequently reside within or in close proximity

to genes, are often associated with expression, and likely

contribute to phenotypic variation. Integrating our panSV

genome, de novo assemblies, and expression data with

genome-editing enabled us to resolve and functionally link

SVs to three major domestication and breeding traits. The

smoky and sb1 loci in particular demonstrate how these re-

sources were essential to resolve complex haplotypes under-

lying QTLs where previous assemblies were thwarted by re-

peats, especially highly similar long and local duplications.

Moreover, our analyses of the smoky and fw3.2 loci show

that presumed causative variation may be incomplete or

incorrect. More broadly, most QTLs discovered by GWAS in

model and crop plants reside in regions with multiple candi-

date genes and variants. In addition to improving GWAS sta-

tistical power, long-read-based discovery of abundant, some-

times complex SVs may immediately pinpoint high-confidence

candidate genes and variants for functional analyses. Similar

progress in understanding functional impacts of SVs will likely

emerge from generating population-scale panSV genomes in

other species (Danilevicz et al., 2020; Song et al., 2020; Sun

et al., 2018; Yang et al., 2019; Zhou et al., 2019).
or the promoter SNP (see STAR Methods). Increased fruit weight is associated

model with gRNA targets (top), PCR genotyping (middle), and representative

nts shown have mutations in all four copies of SlKLUH and exhibit similar tiny

rved for other T0 plants with sequenced indels (red font), except T0-1, which

ins fw3.2. Schematic shows the M82/M82CR slkluh T0-1 (SL) 3 LA1589 (SP)

ctional copy number in an F1 hybrid isogenic background. Genotypic groups A

ly in having 3 or 1 functional copies of tomato KLUH, respectively. Genotypic

ion Cas9 transgene that targets the single SpKLUH allele in trans.

, guide RNA targets; cyan font, mutations. An LA1589 SNP (blue font) permits

roup B are wild type.

. Representative inflorescences (left) and quantifications of flower and sepal

ntative fruits (left) and fruit weight quantification (right) from genotypic groups A

fruit size by 30%.Genotypic groupC plants withmutatedSpKLUH alleles fail to

lant number and n indicates flower/fruit number. All p values are based on two-
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Figure 6. Four SVs in Three MADS-Box Genes Were Required to Breed for the Jointless Trait

(A) Genetic suppressors were selected to overcome a negative epistatic interaction on yield caused by mutations in two MADS-box genes. The SV mutation j2TE

causes a desirable jointless pedicel that facilitates harvesting. Introducing j2TE in backgrounds carrying the cryptic SV mutation ej2w results in excessive

inflorescence branching and low fertility. The sb1 and sb3QTLswere selected to suppress j2TE ej2w negative epistasis. sb3 is an 83-kb duplication harboring ej2w.

sb1 is cloned in this study.

(B) Quantification of sb1 partial suppression of branching in the j2TE ej2w background. The SB1 j2TE ej2W and sb1 j2TE ej2W genotypes were derived from F3

families. Each data point is one inflorescence from F4 plants (n).

(C) Delta SNP index (deltaSNPi, QTL-seq) plot shows the sb1 locus contains the TM3-STM3 MADS-box gene cluster (see STAR Methods).

(legend continued on next page)
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Duplications, Gene Copy Number Variation, and Dose-
Dependent Phenotypes
Our panSV genome revealed that fw3.2 and sb1were both asso-

ciatedwith previously hidden duplications. In both plants and an-

imals, duplications that alter copy number and expression of

dosage-sensitive genes were found to modify phenotypic diver-

sity, including traits important in domestication and breeding

(Lye and Purugganan, 2019). Large, tandem, recent duplications

are one of the most challenging SVs to resolve, and even when a

strong candidate gene is present, as with SlKLUH in the fw3.2

duplication, directly testing how modified gene dosage and

expression impacts quantitative variation is challenging.

Enabled by CRISPR-Cas9 genome editing, we generated plants

with different gene copy numbers, and therefore dosages, for

SlKLUH and STM3 in the fw3.2 and SB1 duplications, respec-

tively. Establishing a dosage series of isogenic genotypes not

only confirmed the causality of the duplications and the specific

genes but also directly demonstrated their quantitative impact.

In particular, heterozygotes of sb1CR alleles (2 copies of STM3

on 1 chromosome) suppressed inflorescence branching of j2TE

ej2W plants to a similar degree as the natural dosage effect

from single-copy STM3 (1 copy of STM3 on each chromosome).

Similarly, reducing functional KLUH copy number from three to

one recapitulated the natural quantitative effect on fruit size of

having four or two copies. Manipulating gene copy number by

genome editing nowprovides away to systematically interrogate

and explore dosage to phenotype relationships (Veitia et al.,

2013), which will be important for guiding the design and engi-

neering of specific dosages for crop improvement.

cis-Regulatory SVs and Quantitative Variation
Our panSV genome showed that the majority of gene-associated

SVs are in cis-regulatory regions, and many are associated with

subtle changes in expression. Expanding long-read sequencing

and expression analyses to a wider population will reveal even

more such SVs. This raises the question to what extent cis-regu-

latory SVs affect phenotypes. For genes that are dosage sensitive,

such as those encoding components of molecular complexes or

involved in signaling networks, a subtle change in expression

could alter phenotype (Veitia et al., 2013). However, themagnitude

of phenotypic effect may depend on a threshold change in
(D) Schematic of the TM3-STM3 locus in the SLL genotypes M82 and Fla.8924

ing STM3.

(E) RNA-seq showing increased expression of STM3 from the SB1 duplication c

(F) CRISPR-Cas9 mutagenesis of the TM3-STM3 cluster (sb1CR) suppresses bran

with indel mutations in the STM3 and TM3 genes (sb1CR-1) and a large deletion sp

indicated genotypes (bottom) are shown. Arrowheads mark branch points.

(G) Quantification and comparison of suppression of inflorescence branching by

ground of j2TE ej2w. Genotypes were derived from F2 populations (see STAR Me

(H) STM3 duplication allele frequency in wild tomato species (distant relatives a

cultivars (SLL fresh market and processing).

(I) Distribution of J2 EJ2 SB1 genotypes in fresh-market and processing/roma t

cessing/roma genotypes have SB1 or sb1, because EJ2 is functional.

(J) Schematic showing the history of breeding for the jointless trait, including whe

STM3) mitigated the severity of branching caused by introduction of j2TE in varie

copies of ej2w) resulted in the complete suppression of branching and restoration

genotypic combinations. Blue and black bold fonts indicate solutions for jointles

In (B), (E), (H), and (I), n represents sample size. p values in (B) and (G) are based
expression and could be weak, making detection challenging in

population genetics studies where other mutations and alleles in-

fluence trait variation. Genome editing could be used to study

the effects of gene-associated SVs by recreating specific muta-

tions or mimicking the expression effects of natural cis-regulatory

SVs in isogenic backgrounds. Our previous work characterizing

collections of CRISPR-Cas9-engineered promoter alleles inmulti-

ple developmental genes showed that deletion and inversion SVs

can affect expression and phenotypic outputs in various, often

unpredictable ways (Rodrı́guez-Leal et al., 2017). As SVs could

be cryptic, a more powerful and informative approach would

therefore be to sensitize the locus or genome, by combining nat-

ural cis-regulatory SVs with engineered SVs in the same promoter

or with engineered mutations in related, potentially redundant

genes. Resolving the functional impacts of SVs, particularly those

whose effects are subtle or cryptic, will advance our understand-

ing of genotype-to-phenotype relationships and facilitate the

exploitation of natural and engineered SVs in crop improvement.
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menez-Gomez, José, Colot, Vincent, and Quadrana, Leandro (2020). The

impact of transposable elements on tomato diversity. bioRxiv. https://doi.

org/10.1101/2020.06.04.133835.

Flutre, T., Duprat, E., Feuillet, C., and Quesneville, H. (2011). Considering

transposable element diversification in de novo annotation approaches.

PLoS ONE 6, e16526.

Foolad, M.R., and Panthee, D.R. (2012). Marker-assisted selection in tomato

breeding. Crit. Rev. Plant Sci. 31, 93–123.

Frary, A., Nesbitt, T.C., Grandillo, S., Knaap, E., Cong, B., Liu, J., Meller, J.,

Elber, R., Alpert, K.B., and Tanksley, S.D. (2000). fw2.2: a quantitative trait lo-

cus key to the evolution of tomato fruit size. Science 289, 85–88.

Fuentes, R.R., Chebotarov, D., Duitama, J., Smith, S., De la Hoz, J.F., Mo-

hiyuddin, M., Wing, R.A., McNally, K.L., Tatarinova, T., Grigoriev, A., et al.

(2019). Structural variants in 3000 rice genomes. Genome Res. 29, 870–880.

Gao, L., Gonda, I., Sun, H., Ma, Q., Bao, K., Tieman, D.M., Burzynski-Chang,

E.A., Fish, T.L., Stromberg, K.A., Sacks, G.L., et al. (2019). The tomato pan-

genome uncovers new genes and a rare allele regulating fruit flavor. Nat.

Genet. 51, 1044–1051.
Gupta, S., and Van Eck, J. (2016). Modification of plant regeneration medium

decreases the time for recovery of Solanum lycopersicum cultivar M82 stable

transgenic lines. Plant Cell Tissue Organ Cult. 127, 417–423.

Ho, S.S., Urban, A.E., and Mills, R.E. (2020). Structural variation in the

sequencing era. Nat. Rev. Genet. 21, 171–189.

Hoede, C., Arnoux, S., Moisset, M., Chaumier, T., Inizan, O., Jamilloux, V., and

Quesneville, H. (2014). PASTEC: an automatic transposable element classifi-

cation tool. PLoS ONE 9, e91929.

Hosmani, P.S., Flores-Gonzalez, M., van de Geest, H., Maumus, F., Bakker,

L.V., Schijlen, E., van Haarst, J., Cordewener, J., Sanchez-Perez, G., Peters,

S., et al. (2019). An improved de novo assembly and annotation of the tomato

reference genome using single-molecule sequencing, Hi-C proximity ligation

and optical maps. bioRxiv. https://doi.org/10.1101/767764.

Hutton, S.F., Scott, J.W., and Vallad, G.E. (2014). Association of the Fusarium

wilt race 3 resistance gene, I-3, on chromosome 7with increased susceptibility

to bacterial spot race T4 in tomato. J. Am. Soc. Hortic. Sci. 139, 282–289.

Jeffares, D.C., Jolly, C., Hoti, M., Speed, D., Shaw, L., Rallis, C., Balloux, F.,

Dessimoz, C., Bähler, J., and Sedlazeck, F.J. (2017). Transient structural var-

iations have strong effects on quantitative traits and reproductive isolation in

fission yeast. Nat. Commun. 8, 14061.

Jouffroy, O., Saha, S., Mueller, L., Quesneville, H., and Maumus, F. (2016).

Comprehensive repeatome annotation reveals strong potential impact of re-

petitive elements on tomato ripening. BMC Genomics 17, 624.

Kawakatsu, T., Huang, S.-S.C., Jupe, F., Sasaki, E., Schmitz, R.J., Urich, M.A.,

Castanon, R., Nery, J.R., Barragan, C., He, Y., et al.; 1001 Genomes Con-

sortium (2016). Epigenomic diversity in a global collection of Arabidopsis thali-

ana accessions. Cell 166, 492–505.

Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P.A. (2019). Assembly of long,

error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546.

Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., and Phillippy,

A.M. (2017). Canu: scalable and accurate long-read assembly via adaptive

k-mer weighting and repeat separation. Genome Res. 27, 722–736.

Kremling, K.A.G., Chen, S.Y., Su, M.H., Lepak, N.K., Romay, M.C., Swarts,

K.L., Lu, F., Lorant, A., Bradbury, P.J., and Buckler, E.S. (2018). Dysregulation

of expression correlates with rare-allele burden and fitness loss in maize. Na-

ture 555, 520–523.

Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C.,

and Salzberg, S.L. (2004). Versatile and open software for comparing large ge-

nomes. Genome Biol. 5, R12.

Layer, R.M., Chiang, C., Quinlan, A.R., and Hall, I.M. (2014). LUMPY: a prob-

abilistic framework for structural variant discovery. Genome Biol. 15, R84.

Lee, J., and Lee, I. (2010). Regulation and function of SOC1, a flowering

pathway integrator. J. Exp. Bot. 61, 2247–2254.

Lee, T.G., Shekasteband, R., Menda, N., Mueller, L.A., and Hutton, S.F. (2018).

Molecular markers to select for the j-2–mediated jointless pedicel in tomato.

HortScience 53, 153–158.

Li, H. (2011). A statistical framework for SNP calling, mutation discovery, asso-

ciation mapping and population genetical parameter estimation from

sequencing data. Bioinformatics 27, 2987–2993.

Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioin-

formatics 34, 3094–3100.

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Bur-

rows-Wheeler transform. Bioinformatics 25, 1754–1760.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,

Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing Sub-

group (2009). The Sequence Alignment/Map format and SAMtools. Bioinfor-

matics 25, 2078–2079.

Li, J., Chitwood, J., Menda, N., Mueller, L., and Hutton, S.F. (2018). Linkage

between the I-3 gene for resistance to Fusarium wilt race 3 and increased

sensitivity to bacterial spot in tomato. Theor. Appl. Genet. 131, 145–155.
Cell 182, 145–161, July 9, 2020 159



ll
Article
Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., Zhang, Z., Lun, Y., Li, S.,

Wang, X., et al. (2014). Genomic analyses provide insights into the history of

tomato breeding. Nat. Genet. 46, 1220–1226.

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold

change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

Lye, Z.N., and Purugganan, M.D. (2019). Copy number variation in domestica-

tion. Trends Plant Sci. 24, 352–365.

Meyer, R.S., and Purugganan, M.D. (2013). Evolution of crop species: genetics

of domestication and diversification. Nat. Rev. Genet. 14, 840–852.

Miyoshi, K., Ahn, B.-O., Kawakatsu, T., Ito, Y., Itoh, J., Nagato, Y., and Kurata,

N. (2004). PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cy-

tochrome P450. Proc. Natl. Acad. Sci. USA 101, 875–880.

Mu, Q., Huang, Z., Chakrabarti, M., Illa-Berenguer, E., Liu, X., Wang, Y., Ra-

mos, A., and van der Knaap, E. (2017). Fruit weight is controlled by cell size

regulator encoding a novel protein that is expressed in maturing tomato fruits.

PLoS Genet. 13, e1006930.

Muños, S., Ranc, N., Botton, E., Bérard, A., Rolland, S., Duffé, P., Carretero, Y.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

DNA and leaf tissue from tomato core

collection and breeding lines.

See Table S1B N/A

Chemicals, Peptides, and Recombinant Proteins

CTAB Sigma Aldrich Cat#H6269-500G

Agarose VWR Cat#97062-250

BsaI NEB Cat#R0535L

BpiI Thermo Fisher Cat#ER1012

T4 DNA Ligase NEB Cat#M0202L

Acetone Fisher Scientific Cat#A928-4

Taq DNA Polymerase with Standard Taq

Buffer

NEB Cat#M0273L

KOD Xtreme Hot Start DNA Polymerase Millipore Cat#71975

iQ SYBR Green Supermix Bio-Rad Cat# 17-8882

Critical Commercial Assays

TruSeq DNA PCR-Free HT Library

Preparation Kit

Illumina Cat#FC-121-3003

TruSeq Nano DNA LT Library

Preparation Kit

Illumina Cat#FC-121-4001

Kapa Library quantification kit Kapa Biosystems Cat#07960140001

RNase Free DNase Set QIAGEN Cat#79254

QIAprep Spin Miniprep Kit QIAGEN Cat#27106

QIAquick PCR Purification Kit QIAGEN Cat#28106

StrataClone Blunt PCR Cloning Kit Stratagene Cat#240207

SuperScript III First-Strand Synthesis

System

Invitrogen Cat# 18080051

RNeasy Plant Mini Kit QIAGEN Cat#74904

Deposited Data

Nanopore long-read sequencing data and

illumina resequencing

This study PRJNA557253

30 RNA-sequencing This study PRJNA557253

Experimental Models: Organisms/Strains

Tomato wild species, landraces, and

cultivars

See Table S1B N/A

Tomato elite breeding lines See Table S1B N/A

Oligonucleotides

Primer sequences for genotyping, see

Table S6

This study N/A

Primer sequences for RT-PCR, see

Table S6

This study N/A

Guide RNA (gRNA) sequences, see

Table S6

This study N/A

Primer sequences for sequencing, see

Table S6

This study N/A

Recombinant DNA

MoClo Toolkit (Weber et al., 2011) Addgene #1000000044

pICH86966::AtU6p::sgRNA_PDS (Belhaj et al., 2013) Addgene #46966

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pICH47732::NOSp::NPTII (Belhaj et al., 2013) Addgene #51144

pICH47742::35S::Cas9 (Belhaj et al., 2013) Addgene #49771

Software and Algorithms

Trimmomatic (Bolger et al., 2014b) http://www.usadellab.org/cms/?

page=trimmomatic

Samtools (Li et al., 2009) http://www.htslib.org/

HTSeq-count (Anders et al., 2015) https://www-huber.embl.de/users/anders/

HTSeq/doc/overview.html

R (R Development Core Team, 2017) https://www.r-project.org/

DESeq2 (Love et al., 2014) https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

STAR (Dobin et al., 2013) https://github.com/alexdobin/STAR

kallisto (Bray et al., 2016) https://pachterlab.github.io/kallisto/

bwa (Li and Durbin, 2009) http://bio-bwa.sourceforge.net/

Picard NA https://broadinstitute.github.io/picard/

Delly (Rausch et al., 2012) https://github.com/dellytools/delly

Lumpy (Layer et al., 2014) https://github.com/arq5x/lumpy-sv

Manta (Chen et al., 2016) https://github.com/Illumina/manta

SURVIVOR (Jeffares et al., 2017) https://github.com/fritzsedlazeck/

SURVIVOR

SVCollector (Sedlazeck et al., 2018b) https://github.com/fritzsedlazeck/

SVCollector

NGMLR (Sedlazeck et al., 2018a) https://github.com/philres/ngmlr

Sniffles (Sedlazeck et al., 2018a) https://github.com/fritzsedlazeck/Sniffles

bedtools (Quinlan and Hall, 2010) https://github.com/arq5x/bedtools2

SciPy (Virtanen et al., 2020) https://github.com/scipy/scipy

Iris NA https://github.com/mkirsche/Iris

Racon (Vaser et al., 2017) https://github.com/lbcb-sci/racon

Jasmine NA https://github.com/mkirsche/Jasmine

MaSuRCA (Zimin et al., 2017) https://github.com/alekseyzimin/masurca

POLCA (Zimin and Salzberg, 2019) https://github.com/alekseyzimin/masurca

seqtk NA https://github.com/lh3/seqtk

Minimap2 (Li, 2018) https://github.com/lh3/minimap2

RaGOO (Alonge et al., 2019) https://github.com/malonge/RaGOO

MUMmer (Kurtz et al., 2004) http://mummer.sourceforge.net/

geneLift NA https://github.com/srividya22/geneLift

GMAP (Wu et al., 2016) http://research-pub.gene.com/gmap/

REPET (Flutre et al., 2011) https://urgi.versailles.inra.fr/Tools/REPET

PASTEC (Hoede et al., 2014) https://urgi.versailles.inra.fr/Tools/

PASTEClassifier

Canu (Koren et al., 2017) https://github.com/marbl/canu

Flye (Kolmogorov et al., 2019) https://github.com/fenderglass/Flye

DupCheck NA https://github.com/malonge/DupCheck

CallIntrogressions NA https://github.com/malonge/

CallIntrogressions

Circa NA http://omgenomics.com/circa/

vcfanno (Pedersen et al., 2016) https://github.com/brentp/vcfanno
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Zachary

B. Lippman (lippman@cshl.edu).

Materials Availability
This study did not generate new unique reagents. Plasmids and transgenic plants generated in this study are available from the Lead

Contact with a completed Materials Transfer Agreement.

Data and Code Availability
All sequencing data generated in this study have been deposited at the Sequence Read Archive (https://ncbi.nlm.nih.gov/sra)

under BioProject PRJNA557253. Github repositories for software presented in this work are listed as follows: https://github.com/

malonge/DupCheck, https://github.com/mkirsche/Jasmine, https://github.com/srividya22/geneLift, https://github.com/malonge/

CallIntrogressions. All genome assemblies/annotations and SV VCF files are available at the Solanaceae Genomics Network

(https://solgenomics.net/projects/tomato100).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant material and growth conditions
A hundred tomato accessions were collected from TGRC (Tomato Genetics Resource Center), USDA (United State Department of

Agriculture), University of Florida, EU-SOL (The European Union-Solanaceae project), INRA (The National Institute for Agricultural

Research), IVF-CAAS (The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science) and our own stocks.

The landrace collection (S. lycopersicum var. cerasiforme) was from the seed stocks of E. van der Knaap. Seeds of

S. pimpinellifolium (LA1589), S. lycopersicum cv. M82 (LA3475), and j2TE ej2w mutant are from Lippman lab. All accessions used

in this study are listed in Table S1B.

Seeds were either germinated on moistened filter paper at 28 �C in the dark or directly sown in soil in 96-cell plastic flats. Plants

were grown under long-day conditions (16-h light/8-h dark) in a greenhouse under natural light supplemented with artificial light from

high-pressure sodium bulbs (�250 mmol m-2 s-1). Daytime and nighttime temperatures were 26–28 �C and 18–20 �C, respectively,
with a relative humidity of 40%–60%.

Quantification of fruit guaiacol and methylsalicylate contents in this study were conducted from plants grown in North Florida

Research and Education Center-Suwannee Valley near Live Oak, Florida. Analyses of fruit weight in F2 segregation populations

were conducted on plants grown at the University of Georgia (Athens, GA). Analyses of floral organ size, fruit weight of F1 hybrid

plants and inflorescence branching in F4 generation were conducted on plants grown in the fields at Cold Spring Harbor Laboratory

(CSHL), Cold Spring Harbor, NY. Seeds were germinated in 96-cell flats and grown for 32 d in the greenhouse before being trans-

planted to the field. Plants were grown under drip irrigation and standard fertilizer regimes. Analyses of inflorescence branching in

two sbCR j2TE ej2W F2 populations were conducted on plants grown in the greenhouses at CSHL andWeizmann Institute of Science,

Israel.

METHOD DETAILS

Short-Read Structural Variant Calling and Sample Selection
Publicly available short-read data came from a total of four sources (Aflitos et al., 2014; Lin et al., 2014; Tieman et al., 2017; Zhu et al.,

2018). Phylogenetic trees derived from some of these data have been adapted from their original publication and are shown in Figures

1A, S1A, and S1B (Razifard et al., 2020; Soyk et al., 2019). Phylogenetic classifications (branch coloring) were manually curated ac-

cording to these previous phylogenetic studies and based on knowledge of tomato types and breeding classes. First, the raw reads

were trimmed with Trimmomatic (v0.32, LEADING:30 TRAILING:30 MINLEN:75 TOPHRED33) (Bolger et al., 2014b). Reads we

aligned to the SL4.0 reference genome with bwa mem (v0.7.10-r789, -M) (Hosmani et al., 2019; Li and Durbin, 2009) Alignments

were then compressed, sorted and indexed with samtools view, sort, and index respectively (v0.1.19-44428cd) (Li et al., 2009).

Next, PCR duplicates were marked with Picard (v1.126) (https://broadinstitute.github.io/picard/). We removed any samples that

had less than 5X alignment coverage or any samples that had a duplication rate > = 20%. If a given accession had more than one

associated BAM file, they were merged with samtools.

An ensemble approachwas used to call SVs from these short-read alignments.We and others have found that a consensus among

multiple short-read SV callers can achieve higher precision without substantially decreasing sensitivity (Zarate et al., 2018). We used

3 independent tools to call SVs: Delly (v0.7.3, -q 20), Lumpy (v0.2.13, -mw 4 -tt 0.0) andManta (v1.0.3, -j 15 -m local -g 30) (Chen et al.,

2016; Layer et al., 2014; Rausch et al., 2012). For each accession, SV call sets from Delly, Lumpy and Manta were then merged with

SURVIVOR (v1.0.7, minimum distance of 1kbp, types must match, and a minimum length of 10bp) (Jeffares et al., 2017). Only SVs

called by at least 2 of the 3 tools were retained. In total, we produced short-read SV calls for 847 accessions.
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We then used SVCollector to select our first set of accessions for long-read sequencing (Sedlazeck et al., 2018b). For SVCollector,

we further filtered short-read SV calls to only include SVs that intersect genes (+/� 5 kbp of flanking sequence). These filtered SVs

were then used as input into SVCollector (greedy), and the top-ranked SLL (29) and SLC (22) accessions for which we had available

seeds were selected (Table S1A). Aside from these 51 accessions selected with SVCollector, we selected an additional 49 acces-

sions for long-read sequencing. These included SLL, SP, GAL and CHE accessions which were not included in the short-read SV

analysis. A list of all accessions and their associated SVCollector ranks (where applicable) is available in Table S1A.

Tissue collection and high molecular weight DNA extraction
For extraction of high molecular weight DNA, young leaves were collected from 21-day-old light-grown seedlings. Prior to tissue

collection, seedlings were etiolated in complete darkness for 48 h. Flash-frozen plant tissue was ground using a mortar and pestle

and extracted in four volumes of ice-cold extraction buffer 1 (0.4 M sucrose, 10 mM Tris-HCl pH 8, 10 mMMgCl2, and 5 mM 2-mer-

captoethanol). Extracts were briefly vortexed, incubated on ice for 15 min, and filtered twice through a single layer of Miracloth (Milli-

pore Sigma). Filtrates were centrifuged at 4000 rpm for 20 min at 4 �C, and pellets were gently resuspended in 1 ml of extraction

buffer 2 (0.25 M sucrose, 10 mMTris-HCl pH 8, 10 mMMgCl2, 1%Triton X-100, and 5 mM2-mercaptoetanol). Crude nuclear pellets

were collected by centrifugation at 12,000g for 10 min at 4 �C and washed by resuspension in 1 ml of extraction buffer 2 followed by

centrifugation at 12,000g for 10 min at 4 �C. Nuclear pellets were re-suspended in 500 ml of extraction buffer 3 (1.7 M sucrose, 10 mM

Tris-HCl pH 8, 0.15% Triton X-100, 2 mMMgCl2, and 5 mM 2-mercaptoethanol), layered over 500 ml extraction buffer 3, and centri-

fuged for 30 min at 16,000g at 4 �C. The nuclei were resuspended in 2.5 ml of nuclei lysis buffer (0.2 M Tris pH 7.5, 2 M NaCl, 50 mM

EDTA, and 55 mMCTAB) and 1 ml of 5% Sarkosyl solution and incubated at 60 �C for 30 min. To extract DNA, nuclear extracts were

gently mixed with 8.5 ml of chloroform/isoamyl alcohol solution (24:1) and slowly rotated for 15 min. After centrifugation at 4000 rpm

for 20 min, �3 ml of aqueous phase was transferred to new tubes and mixed with 300 ml of 3 M NaOAC and 6.6 ml of ice-cold

ethanol. Precipitated DNA strands were transferred to new 1.5 ml tubes and washed twice with ice-cold 80% ethanol. Dried DNA

strands were dissolved in 100 ml of elution buffer (10 mM Tris-HCl, pH 8.5) overnight at 4 �C. Quality, quantity, and molecular size

of DNA samples were assessed using Nanodrop (Thermofisher), Qbit (Thermofisher), and pulsed-field gel electrophoresis (CHEF

Mapper XA System, Biorad) according to the manufacturer’s instructions.

Short-read DNA sequencing
Aside from the publicly available data used for short-read-based SV calling, we produced additional short-read data in-house for use

in genome assembly for all but 2 (M82 and Fla.8924) MAS2.0 accessions. Short-read sequencing was performed according to Soyk

et al. (2019). In brief, libraries were prepared with the Illumina TruSeq DNA PCR-free prep kit from 2 mg genomic DNA sheared to

550 bp insert size. DNA libraries were sequenced on an Illumina NextSeq500 platform at the Cold Spring Harbor Laboratory Genome

Center.

Long-read DNA Sequencing
Libraries for Oxford Nanopore genome sequencing were constructed using high-quality HMW DNA. DNA was sheared to �20 kb

using Covaris g-tubes or �75 kb using Megarupter (Diagenode) and purified with a 1 3 AMPure XP bead cleanup. Next, DNA

size selection was performed using the Short Read Eliminator kit (Circulomics). Library preparation was performed with 1.5 mg of

size-selected HMWDNA, using the Ligation Sequencing Kit SQK-LSK109 (Oxford Nanopore Technologies) followingmanufacturer’s

guidelines. Libraries were loaded on MinION or PromethION flow cells and sequenced according to standard protocols. Runs were

basecalled with either Albacore v2.3 or with Guppy v2.1 through 3.2. Basecalling was performed using the PromethION r9.4.1model,

with recommended settings for the SQK-LSK109 kit and the FLO-PRO001 or FLO-PRO002 flowcells. At least 40G of data with mean

read quality above or equal to Q7 were produced for each sample. Statistics describing the long-reads for all 100 accessions can be

found in Table S1C.

Long-read Structural Variant Calling, Filtering, and Merging
A diagram describing the SV calling pipeline is depicted in Figure S1C. For each of our 100 accessions selected for long-read

sequencing, we aligned amaximum of 60X coverage to the SL4.0 reference genome. The SL4.0 reference genome is a recently pub-

lished preprint that improves to the previous (SL3.0) tomato reference genome (Hosmani et al., 2019). This PacBio long-reads assem-

bled genome is the most complete and accurate representation of the Heinz 1706 reference genome to date. ITAG4.0, the reference

gene models used in this study, are the accompanying reference gene annotation set. To call SVs relative to this reference, we

aligned reads with NGMLR (v0.2.7, -x ont–bam-fix) and called SVs with Sniffles (v1.0.11)(–cluster–min_homo_af 0.7 -n 1000) (Sed-

lazeck et al., 2018a). As is convention, SV labels (insertions, deletions, duplications, inversions and translocations) are defined with

respect to this single reference genome and do not necessarily define the underlying mutations causing the genetic variation. We

further note that long insertions are somewhat underrepresented since Sniffles’ power to call insertions is bounded by read-length.

For read sets exceeding 60X coverage, the longest set of reads achieving 60X was used. We then filtered SVs to remove potentially

spurious calls. First, we identified regions of the reference genome prone to producing false SV calls and removed any SVs intersect-

ing these regions (a total of 2,961,888 bp of the SL4.0 reference genome). To define these regions, we simulated ONT reads using

SURVIVOR from the SL4.0 reference genome and called SVs with Sniffles. We performed this simulation a total of 9 times and
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merged the 9 VCF files with SURVIVOR (minimum distance of 1kbp, types must match, and a minimum length of 50bp). We then

masked any region of the reference implicated in any SV from this simulation, including 2.5 kbp of flanking sequence. Next, we

removed any SVs mapping to the ambiguous reference ‘‘chromosome 0’’ (SL4.0ch00). We also removed SVs larger than 100 kbp

or SVs with a ‘‘0/0’’ genotype.

Using this same process described above, we also aligned Heinz 1706 PacBio reads to the SL4.0 reference genome to assess the

propensity of the reference genome to produce false positives (Hosmani et al., 2019). We called only 75 from these alignments, sug-

gesting that spurious false positives due to reference bias in our panSV-genome are rare.

For some accessions, duplications were filtered by observing short-read coverage across putative duplications. To do this, we

wrote a custom tool similar to CNVnator’s genotyping functionality (Abyzov et al., 2011). First, for each accession, we calculated

short-read coverage in non-overlapping 200bp windows of the reference genome using bedtools (Quinlan and Hall, 2010). The

same reads and alignments as described in ‘‘Short-Read Structural Variant Calling and Sample Selection’’ were used here. Coverage

was then corrected for GC bias using a custom version of the algorithm outlined in Yoon et al. (2009). The global mean coverage was

calculated by first removing outliers (using the 1.5 x IQR rule) then fitting a Gaussian distribution to the coverages using SciPy (stats.-

norm.fit) (Virtanen et al., 2020). Finally, in order to verify a duplication, we required that the coverage roughly spanning the duplication

boundariesmust be greater than 1.75X the global mean coverage. Only duplications at least 1 kbp in sizewere considered. In order to

calculate the coverage of the duplicated region, adjacent 200 bp windows were merged together via averaging to obtain 1 window

close to the true duplication size. The coverage for this window, aligned to the original duplication coordinates (rounded to the nearest

200bp interval) was then compared to the global mean coverage. The above duplication filtering was only performed on samples for

which we had short-read data available. The source code for duplication filtering can be found on GitHub (https://github.com/

malonge/DupCheck).

By default, Sniffles provides supporting reads for each insertion call but reports the insertion sequence from a single noisy read. To

associate each insertion with an accurate sequence, we used Iris (v1.0.1)(https://github.com/mkirsche/Iris). Iris extracts the reads

supporting the insertion sequencing using samtools, computes their consensus using Racon (Vaser et al., 2017), and then replaces

the original insertion sequence with the polished consensus. Finally, we used Jasmine to merge SVs across all accessions (v1.0.1,

min_support = 1 max_dist = 500 k_jaccard = 8 min_seq_id = 0.25 spec_len = 30)(see ‘‘Merging SVs with Jasmine’’ below). We used

the default distance metric for merging, which is Euclidean distance. Briefly, 2-dimensional coordinates for each SV are given by (SV

start position, SV length). SVs may be candidates for merging if their Euclidean distance between these 2D points is% 500. The pri-

mary SV set was merged across all 100 accessions, though we also produced group-specific merged call sets for SLL, SLC, and SP

using the same parameters.

Merging SVs with Jasmine
We developed a new SV merging tool called Jasmine, which is available open-source on GitHub (https://github.com/mkirsche/

Jasmine). Jasmine constructs a graph G in which nodes represent SVs from individual samples. Edges connect pairs of SVs that

may be merged based on criteria such as the distance between their breakpoints, and in the case of insertions, their sequence sim-

ilarity. Next, the variants are partitioned based on reference sequence, SV type, and strand. In order to compute the best possible set

of SVmerges for a given group, Jasmine computes a forest on the graphwhich has a few key properties: 1) The edges in the forest are

a subset of the edges in G, 2) No tree in the forest contains multiple nodes representing SVs from the same sample, 3) There are no

unused edges in G which can be added to the forest while maintaining the previous properties, and 4) The sum of the breakpoint

distances of edges in the forest is minimized. To do this, Jasmine uses a variant of Kruskal’s algorithm for computing minimum span-

ning trees. By considering the edges in non-decreasing order of edgeweight, Jasmine greedily adds edges to the forest if theywill not

violate any of the required properties. To avoid storing this potentially very large network inmemory, the network is computed dynam-

ically by finding low-weight edges for each node with a KD-tree. Initially, a small constant number of edges incident to each node is

stored, and as these are processed in increasing order of edge weight, new edges to process are added to the set by finding the next

nearest neighbors for each node. As a result of this optimization, Jasmine is efficient in terms of both memory and runtime and can

merge the entire set of over 1.7 million tomato SV calls in less than ten minutes on a single thread of a laptop.

We tested the efficacy of Jasmine on a simulated dataset. In this experiment, we use our merged tomato panSV-genome as our

‘‘ground truth.’’ This provides us with a realistic distribution of allele frequencies, SV types, and SV genomic positions. From this

merged SV set, we then derived 100 individual SV sets, essentially reversing the merging process. When assigning variants to their

original individual set, we added noise to the SV genomic position. The noise was modeled with a uniform distribution centered at

50 bp for both the start positions and lengths. In addition, the sequences of insertions were changed tomodel 10% sequencing error.

Then, we reran Jasmine (using the same parameters as those used for our panSV-genome) on these noisy individual call sets and

compared the results to the original merging. 98.98% of the 19.4 million variant pairs which were merged initially were also merged

in the simulated results, while only 0.93% of the merged pairs from the simulation were unmerged in the original dataset. We also

found that of the 238k variant calls which originally consisted of merged variants from multiple samples, 97.78% of them contained

exactly the same sets of variants after the simulation. The added noise to the variant boundaries caused some previously merged

variants to exceed the distance threshold. Also, some originally close variants in the same sample traded places during the merging

process. This analysis shows that the method is highly robust to variation in the positions and lengths of structural variants across

samples.
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MAS2.0 Genome Assembly
We established de novo genome assemblies and associated gene and repeat annotations for a subset of the 100 accessions

sequenced for SV analysis. This included the PAS014479 (SP), BGV006775 (SP), BGV006865(SLC), BGV007989 (SLC),

BGV007931 (SLC), PI303721 (SLL), PI169588 (SLL), EA00990 (SLL), LYC1410 (SLL), Floradade (SLL), EA00371 (SLL), M82 (SLL),

Fla.8924 (SLL), and Brandywine (SLL) accessions. Collectively, we refer to these assemblies and annotations as ‘‘MAS2.0,’’ and

they are freely available to download at the Sol Genomics Network (https://solgenomics.net/projects/tomato100).

A diagram describing the assembly pipeline is depicted in Figure S2A. A hybrid assembly was performed for each accession using

theMaSuRCA assembler (v3.3.3 or v3.3.4) (Zimin et al., 2017). Sequencing data used for assembly are described in ‘‘Short-read DNA

sequencing’’ and ‘‘Long-read DNA sequencing’’ and Table S2D. M82 and Fla.8924 were not sequenced in-house for this study, but

rather come from a previous publication (Alonge et al., 2019). As is recommended by the MaSuRCA documentation, no preprocess-

ing was done on any of the sequencing data. For the ONT reads, we used the longest 35X coverage of reads with an average Phred

quality score of at least 7. Library insert sizes for all Illumina data was set to 500 ± 50. All assemblies employed the Flye unitigger

during the final stage of MaSuRCA, except M82, which used default unitigging settings. All other MaSuRCA parameters were set

to default values. The MaSuRCA draft assembly stats are found in Table S2A.

Each set of initial draft contigs underwent two rounds of short-read polishing with POLCA (MaSuRCA v3.3.4)(Zimin and Salzberg,

2019). As input for each of the two rounds of polishing, we used seqtk to randomly sample 2/3 of the Illumina data used during assembly

(https://github.com/lh3/seqtk). After polishing, we screened each set of contigs for bacterial contamination by aligning them to the to-

mato SL4.0 reference and a bacterial reference genome. Every RefSeq bacterial genome, downloaded on October 1st, 2019,

comprised our bacterial reference. Contigs were mapped to both references with Minimap2 (-k19 -w19) (Li, 2018). Any contig covered

more by bacterial alignments than by tomato alignments were deemed contaminated and removed from the assembly. Only the

BGV006865 and PI303721 accessions contained contaminated contigs. Finally, polished and screened contigs were scaffolded ac-

cording to the SL4.0 reference genome using RaGOO (v1.1) (-T corr) (Alonge et al., 2019). The MaSuRCA mega-reads associated

with the initial assemblies were used for misassembly correction. ‘‘Chromosome 0’’ of the SL4.0 was not considered during RaGOO

scaffolding (-e). We generated dotplots for each assembly by aligning the final pseudomolecules to the SL4.0 reference genome using

nucmer (-l 100 -c 500) and finally plottingwithmummerplot (–fat–layout) (Figures S2C–S2P) (Kurtz et al., 2004). Finally, we usedBUSCO

to assess genome completeness (v3.0.2, -l solanaceae_odb10 -m genome -c 10 -sp tomato)(Table S2B) (Simão et al., 2015).

To observe SV concordance between our panSV-genome and the MAS2.0 assemblies, we called SVs from the assemblies using

two techniques. First, we aligned the MAS2.0 assemblies to the SL4.0 reference genome using Nucmer (v3.1, -maxmatch -l 100 -c

500) and called SVs with Assemblytics (unique_length_required = 500 min_size = 15, max_size = 100500) (Nattestad and Schatz,

2016). Additionally, we simulated 60X coverage of perfect 25 kbp reads from the MAS2.0 assemblies and called SVs with NGMLR

(v0.2.7, -x ont –bam-fix) and Sniffles (v1.0.11, -s 2 -l 15 –cluster –min_homo_af 0.7 -n 1000) with respect to the SL4.0 reference

genome. Combining the Assemblytics and SnifflesMAS2.0 SV sets, we observed the pairwise SV concordance with the correspond-

ing 14 accessions in our panSV-genome. The % SV overlap for each of the 14 accessions is as follows: BGV006775: 95.5571,

BGV006865: 94.5002, BGV007931: 95.8251, BGV007989: 91.8735, Brandywine: 91.1921, EA00371: 87.8088, EA00990: 86.9073,

Fla.8924: 89.4226, Floradade: 84.7832, LYC1410: 93.3863, M82: 90.3600, PAS014479: 92.8686, PI169588: 88.5430, PI303721:

70.9839.

We note that we do not expect perfect overlap between the read-mapping and assembly-based SV calls, since both have unique

fallibilities and biases. For example, larger variants foundwith one approachmay be broken intomultiple smaller variants found by the

other approach. Or, the exact position of variants may shift within genomic repetitive elements. Also, SVs in regions of the genome

that fail to assemble may still be detected by aligning reads to a reference genome. Furthermore, expected variability in nanopore

sequencing, along with other factors, likely contributes to the between accession variation that we observe. Broadly, an average

overlap of 90% is a positive indication of SV accuracy and data quality.

MAS2.0 Gene Annotation
We used a ‘‘lift-over’’ approach to annotating the MAS2.0 assemblies with gene models. Along with the tomato reference ITAG4.0

genemodels, our reference genemodel set included previously published ‘‘pan-genome’’ geneswhichmay bemissing from ITAG4.0

but present in our assemblies (Gao et al., 2019). Gene models were lifted-over onto each of the 14 MAS2.0 assemblies with geneLift

(v1.1, -c 90 -i 95) (https://github.com/srividya22/geneLift). Briefly, geneLift maps reference cDNA sequences to target assemblies

using GMAP and Minimap2 and retains alignments with at least 90% coverage and 95% identity (Wu et al., 2016). The remaining

non-overlapping GMAP alignments constitute the initial gene models, which are then supplemented by Minimap2 alignments to un-

annotated regions providing additional non-redundant gene models. Gene IDs reported by geneLift match the reference gene IDs

and any gene duplications reported have an added suffix ‘‘-c’’ followed by the respective copy number of the gene to make them

unique. Annotated ‘‘pan-genome’’ genes can be distinguished by a ‘‘TomatoPan’’ gene ID prefix. The geneLift statistics for each as-

sembly can be found in Table S2C.

MAS 2.0 and SV Repeat Annotation
We used REPET to annotate MAS2.0 assemblies and panSV-genome insertion/deletion sequences with repeats (Flutre et al., 2011).

From each MAS2.0 genome assembly, we built a sub-genome by selecting the longest contigs up to a cumulative size ranging
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360-380 Mbp. This allowed us to sample a large portion of the genome while keeping the downstream computation tractable (Jouff-

roy et al., 2016). Each sub-genomewas used to generate libraries of consensus sequences that are representative of repeats present

therein using the TEdenovo pipeline from the REPET package v2.4 (parameters were set to consider repeats with at least 5 copies).

The libraries produced were filtered to keep only those sequences that are found at least once as a full-length copy in the respective

sub-genomes. Each resulting library of consensus sequences was then used as query for annotation of respective whole genomes

using the TEannot pipeline from the REPET package v2.4. The library of consensus sequenceswas classified using PASTEC followed

by semi-manual curation (Hoede et al., 2014).

For the annotation of insertions and deletions, the filtered consensus libraries obtained from ten of the 14 MAS2.0 assemblies (the

first 10 to be completed) were pooled and appended to those from SL4.0 which were generated previously using the protocol

described above. This combined library was then used as query for whole genome annotation by TEannot using default settings.

PI129033 NSGT Local Assembly
None of our 14 MAS2.0 assemblies contained the NSGT deletion allele described in ‘‘New Reference Genomes Resolve Multiple

Haplotypes for the ‘‘Smoky’’ Volatile Locus.’’ Therefore, we performed a local assembly of the NSGT locus in PI129033, a sam-

ple known to carry this deletion allele. Using the same long-read alignments as described in ‘‘Long-read Structural Variant Call-

ing, Filtering, and Merging,’’ we extracted PI129033 reads that aligned to the NSGT locus (SL4.0ch09:65168601-65653800) us-

ing samtools view. These reads were then error corrected with Canu (corOutCoverage = 999, genomeSize = 475k) and

assembled with Flye (–nano-corr,–genome-size 475k) (Kolmogorov et al., 2019; Koren et al., 2017). Flye produced a single con-

tig 534,847 bp in length representing the NSGT locus in PI129033. We next sought to polish this contig with short reads to pro-

duce an accurate representation of the locus. To do this, we first placed the contig into the SL4.0 reference genome in order to

provide a suitable reference genome for short-read mapping. This avoids the potential poor quality of mapping when aligning

WGS reads to a small segment of the genome. To create this pseudo-reference genome, we first started with the SL4.0 genome

and replaced the NSGT locus (SL4.0ch09:65168601-65653800) with our local assembly. We also added 100bp gaps to the

flanks of the inserted contig so that we could identify and retrieve it after polishing. We aligned short reads to this pseudo-refer-

ence using bwa and performed two rounds of short-read polishing with Racon (-u). Finally, we removed the local assembly from

the pseudo-reference using samtools faidx and aligned it with Minimap2 (-ax asm5) to the SL4.0 reference genome to precisely

define the deletion coordinates.

SV Hotspot and Introgression Analysis
For each accession, we counted the number of SVs in non-overlapping 1Mpbwindows of the reference genome. Binswith a relatively

large number of SVs are informally referred to as ‘‘SV hotspots.’’ An example distribution of SV frequency in 1 Mbp bins for M82 is

shown in Figure S3M. SV frequency, shown in heatmap and circos form, is depicted in Figures 2A and S3A–S3L (http://omgenomics.

com/circa/). Our observation of ‘‘hotspots’’ usually results from visual interpretation of these plots. SV hotspot heatmap rows are or-

dered within each phylogenetic group (GAL, CHE, SP, SLC, SLL) by the R ‘‘heatmap.2’’ default row ordering. These ordered groups

were then concatenated to produce the final heatmap.

Since we hypothesized that introgression fromwild donors could account for many of the observed SLL hotspots, we developed a

technique to compare accessions to look for genomic regions of SV similarity. The custom Python code used for this task can be

found in a GitHub repository (https://github.com/malonge/CallIntrogressions). The script ‘‘get_distances.py’’ compares SLL acces-

sions to one or many accessions from any other ‘‘comparison’’ group (SP, SLC, GAL, or CHE). The algorithm considers successive

1Mpbwindows of the reference genome. For each SLL accession, its set of SVs in a given window is compared to the set of SVs in all

accessions in the comparison group in the same window. To compare two sets of SVs, we calculate the Jaccard similarity, requiring

at least 5 SVs in both SV sets. The script then outputs, for each 1 Mpb window and for each SLL accession, the maximum Jaccard

Similarity with any other comparison accession. If all comparisons for a given window had fewer than 5 SVs in either SV set, an ‘‘NA’’

value is reported.

We calculated similarity for all 45 SLL accessions at the same time by comparing each accession to each non-SLL accession.

Comparisons against GAL andCHEdid not yield any candidate introgressions from these groups, sowe did not display those results.

Comparisons against SP and SLC, which both show many regions of putative admixture/introgression from donors of these groups,

are shown in Figures S3A–S3L. Tables S3A–S3L report the comparison accessions which yielded themaximum Jaccard similarity for

each window depicted in Figures S3A–S3L. In Figures 2D and 2E, we also show an instance where we compare SLL accessions

against a single SP comparison accession (LA1589).

SV Genomic Feature Annotation
Throughout the manuscript, we describe various relationships between SVs and other genomic features such as genes. Generally,

we annotated our panSV-genome with genomic features using vcfanno (Pedersen et al., 2016). We define an ‘‘annotation’’ as the

association of a particular SV with particular feature IDs (such as a gene ID) based on some relationship. vcfanno annotates SVs

by finding their intersection (overlap) with genomic feature intervals. Accordingly, some of the annotations reported in themanuscript

can be directly interpreted from vcfanno, such as ‘‘Insertions in exons,’’ or ‘‘Deletions overlapping 5 kbp upstream,’’ since these can

be directly interpreted from feature intersection. Other annotations, such as SV containment of genes, required some combination of
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intersection calculations. For example, to detect genes contained by SVs, we first checked if the gene start and end positions inter-

sected a given SV. If that SV intersected both the start and end of a gene, it contains that gene.

We ultimately producedmany SV/feature annotation classes which are explained in more detail here. In any applicable annotation,

‘‘upstream’’ or ‘‘downstream’’ refers to the 50 or 30 flanking regions of genes, respectively. In supplemental material, these ‘‘up-

stream’’ and ‘‘downstream’’ regionsmay also be referred to as ‘‘50 UTR’’ and ‘‘30 UTR’’ respectively. ‘‘Insertions in exons,’’ ‘‘Insertions
in introns,’’ ‘‘Insertions in 5 kbp downstream,’’ ‘‘Insertions in 5 kbp upstream,’’ ‘‘Deletions overlapping 5 kbp upstream,’’ and ‘‘De-

letions overlapping 5 kbp downstream’’ are self-explanatory. ‘‘Duplications’’ are duplications that contain entire genes. ‘‘Deletions

of exons’’ are deletions that delete at least one entire CDS exon of a gene, but do not delete the entire gene. Finally, ‘‘Deletions of

CDS start’’ are deletions that contain 50 bp upstream and downstream of a CDS start site.

The Impact of SVs on Gene Expression
Data analysis was performed in R using custom scripts. In each tissue (apex, cotyledon and root), gene expression was averaged

over the biological replicates in each accession (23 accessions with 3 replicates each in apex and root, and 22 accessions with 4

replicates each in cotyledon), and the genes with average expression count of at least 1 across the accessions were retained for

further analysis. We averaged read counts across replicates to effectively treat the replicate expression as estimating a fixed effect.

These gene expression averages within each accession/tissue were ranked and standardized so that the values were constrained

between 0 and 1. While most of our analyses operate on these rank data, in order to provide estimates of fold change, we used

the average expression profiles across replicates directly. These values were normalized by division of total read count of each

accession and then fold changes were calculated across these normalized values between accessions with and without the SV.

Are SV-associated genes differentially expressed?

We first defined a list of SV-gene pairs based on SV annotations (see SV Genomic Feature Annotation). We filtered this list to only

include SV-gene pairs which had the SV present in at least 5 and absent in at least 5 of the accessions for which we had RNA-

seq data. For each of the SV-gene pairs, the accessions were split into two groups: with and without the SV. The extent of differential

expression of the associated gene was calculated using a two-sided Mann-Whitney U test across the accession split. The Mann

Whitney U test is a rank-based test that is very robust to underlying distributions in the expression values. The p values among a

specific annotation and tissue type were adjusted by applying Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).

The adjusted p values for each annotation and tissue type were aggregated using two methods: Fisher’s method and a harmonic

mean estimate (Sitgreaves, 1960; Wilson, 2019), and are listed in Table S4A.

At least half of the SV-associated genes in each SV type were common to all three tissues, exhibiting different levels of differential

expression across the same accession split. In order to determine an average differential expression across the tissues, we used

Fisher’s method to aggregate p values across the three tissues for each SV-associated gene, and subsequently applied Benja-

mini-Hochberg method to limit the number of false positives (Table S4B).

Can we predict SV-associated genes from their differential expression?

For this analysis, we formulated a prediction task: Using the SV annotations as a ‘‘ground truth’’ labeled feature set (the gene asso-

ciated with the SV is positively labeled and all other genes are negatively labeled), we measured how well we could predict the pres-

ence of an associated SV (positive label) given differential expression. A diagram depicting the workflow of this analysis is shown in

Figure S4B. We used AUROC (Area under the ROC) scores as a measure of the performance of this task, which is calculated as fol-

lows: For each SV of a given annotation type, the p values corresponding to the differential expression across the accession split (with

or without the SV) was calculated for all genes in a given tissue via a two-sided Mann-Whitney U test, and the list of p values was

ranked (highest rank corresponds to the most significant p value). For each SV, AUROC scores were analytically calculated by deter-

mining the positively labeled gene’s position in the ranked list of all gene p values (high AUROC score corresponds to a near-perfect

identification of the SV-associated gene). In other words, genes are predicted to be associated with a variant if they exhibit excess

differential expression when comparing accessions with versus without the SV. Conceptually, this can also be described as our clas-

sifier choosing a series of cutoff positions in this list, generating a ROC curve (and associated AUROC) by calculating the true and

false positive rate associated with each cutoff (Figure S4B). Since all genes are affected by the underlying phylogenetic structure

in the data, successful prediction of the true SV-associated gene in the list of all genes only occurs when predictions are robust

to confounding population structure.

We have thus far described our prediction task when considering a single SV-gene pair. To assess the broad impact of SVs on

expression, we combined all SV-gene pairs in a given annotation and tissue type. This is conceptually the same as for single SV-

gene pairs, except the gene labels are combined into an aggregated labeled set where there is one positive gene label for each

SV-gene pair (Figure S4B). The resulting ROC curve and associated AUROC effectively measures the average performance of the

classifier over all SV-gene pairs. A high AUROCwould indicate SVs globally have a significant impact on associated gene expression.

Our aggregated classifier’s performance can be measured by computing an overall p value as follows. For a given variant and tis-

sue type, the ranks of p values of all SV-associated genes are removed from the list of sequential ranks of all expressed genes in a

given tissue (for example, the ranks of 17 genes associated with duplications in apex tissue are removed from the sequence of ranks

1:20029 of the 20029 expressed apex genes). AOne-tailedMann-Whitney U test was performed to evaluate if themedian of the ranks

of SV-gene pair p valueswas lower than themedian of ranks of p values of all other expressed genes. The resulting p value is depicted

by the size of the circle in Figure 3E. It is important to note that the overall p values (circle size) are influenced by the number of
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SV-associated genes used in classification in each case, as well as the fold change in expression. For instance, duplications in apex

have a larger p value (p< 4:06x10�4, with 17 variants used in classification) than insertions in 5 kbp downstream (p<1:72x10�16, with

1129 variants used in classification). Lists of AUROC scores of all SV-associated genes for each tissue and variant type are provided

in Tables S4C–S4L.

Plant phenotyping
To quantify floral organ size, lengths of sepals and anther cones of closed yellow flower buds just before opening were measured.

Inflorescence complexity was measured by counting the number of branching events per inflorescence. Flowering time was quan-

tified by counting the number of leaves before the first inflorescence.

NSGT haplotype analyses
Thirteen of the fourteen MAS2.0 genome assemblies filled the gaps at the chromosome 9 ‘‘guaiacol’’ GWAS locus. To annotate this

region, the full-length protein sequence of NSGT1 was used for BLAST search against the Heinz SL4.0 reference genome and the 14

MAS2.0 assemblies. We used the protein sequence as the query for BLAST to achieve more sensitive and more contiguous align-

ments while still allowing for the discrimination of NSGT alleles. Based on the BLAST results and sequence differences, four coding

sequence variants including NSGT1, NST2, nsgt1 and nsgt2 are annotated in these genomes (Tikunov et al., 2013). We observed

several accessions missing sequencing coverage at this locus, suggesting a deletion. We selected one such accession

(PI129033) for a local assembly of the deletion haplotype (see ‘‘PI129033 NSGT Local Assembly’’). The local assembly revealed

the large deletion haplotype V.

Short-read based genotyping
NSGT locus coding sequence variants genotyping

From short-read alignments to the SL4.0 reference genome, we extracted reads overlapping with NGST locus

(SL4.0ch09:65390765-65417476) using samtools view. In addition, we included previously unmapped reads. Thesemapped and un-

mapped read sets were converted back to a fastq files using samtools bam2fq. Subsequently, the reads were mapped to the

unique portion of nsgt1 (117bp, GTTAGGTTTTAGGGTTTCAATTATGCTTGGAAATTTGGAagaagccatttgaaaggcttgaataaggtttaggtac

cATCTTTAACAACTACCTCCAAAATTATAAACCTTTTTCTT), nsgt2 (86bp, CCAATACTTGAATGgttcaaaattagactttgtactttcaagaaa

accttgtGGAACCATTTCTTCAATTGTTTTGTTCACCCCTT), NSGT1 (100bp, ATATAATAGCTTCAACAACTTTTTAACCCCTTcatcaata

gctttcaattttatcttctcactcaattgCATTGCCTTCAAATGAATTTGTTTCCTAGGC) and NSGT2(123bp, CAAAGGCTTTCTCATCGCGTGGT

TTTATTGGTTTCATATCTAATTTCTTGatctcatagtcatgaagaaaaggAAAAGATGTAAGGCTTGAACTCCCATAAAGAAATTGGTGGTAAA

GGTAGG) simultaneously using bwa mem (-M). After mapping, reads with edit distance (NM tag) smaller than 15 and a min-

imum mapping quality of 20 were extracted. We used samtools depth to compute the coverage of the filtered reads across

only the core of the unique regions (lower case sequences above) for nsgt1, nsgt2, NSGT1 and NSGT2. If more than 4 core

bp had 0 coverage, we discarded the total mapped read counts for the sequence. If there was read count support for any of

the nsgt1, nsgt2, NSGT1 or NSGT2 haplotypes, we report as them as ‘‘presence.’’ Since the ‘‘unique’’ sequence of NSGT1 is

also present in nsgt1, if both nsgt1 and NSGT1 were genotyped as ‘‘presence,’’ we only labeled nsgt1 as ‘‘presence.’’ This is

based on the observation that no sequencing resolved haplotypes have both nsgt1 and NSGT1 together. This genotyping was

consistent with the observed haplotypes in our MAS2.0 assemblies.

NSGT locus deletion variant genotyping

From the short-read alignments to SL4.0, we counted the reads with amapping quality of at least 20 in themiddle region of the haplo-

type V deletion: SL4.0ch09:65401889-65404136. Accessions with less than 5 mapped reads were genotyped as ‘‘deletion.’’ The

pipeline was benchmarked against PCR genotyped samples including 138 accessions with no deletion and 17 accession with de-

letions. Results from our pipeline were 100% consistent with PCR genotyping results.

sb1 duplication genotyping

From the short-read alignments to SL4.0, we extracted the reads mapped to a broad region that contained the sb1 duplication locus:

SL4.0ch01:77727550-77765153. For each sample, we also extracted the unmapped reads. Mapped and unmapped read sets were

converted to fastq files using samtools. Subsequently, we aligned the extracted reads to a portion of the sb1 locus

(SL4.0ch01:77737550-77745153), which avoided high copy number TEs and represented a unique sequence of this locus. This

was done with bwa mem (-M). We counted the number of reads mapped to this locus using samtools idxstats. The raw counts

were normalized based on the total number of reads mapped for each sample. We manually checked the read alignments to

SL4.0 and verified 22 single-copy accessions and eight duplication accessions. Accessions with normalized coverage lower than

mean (verified single-copy accessions) – 1 standard deviation were genotyped as ‘‘single-copy’’ and accessions with normalized

coverage greater than mean (verified duplication accessions) + 1 standard deviation were genotyped as ‘‘duplication.’’

Tissue collection, RNA extraction and quantification
For 30 RNA-sequencing (30 RNA-seq), seeds were treated with 50% bleach for 20 minutes to homogenize germination and

were germinated in Petri dishes with moistened filter paper in the dark at 28 �C.Whole root tissues were collected 3 days after germi-

nation with amixture of several seedlings as one biological replicate and three such replicates for each of a total of 23 accessions. For
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cotyledon tissues, seedlings after germination at similar stages were transplanted to soil in 96-cell flats and grown in the greenhouse.

Cotyledons of seedlings were collected when two true leaves start to visibly emerge (10�11 days after sowing). Four biological rep-

licates each with several seedlings combined for each of a total of 22 accessions were collected. For apex tissue, seedlings after

germination at similar stages were transplanted to soil in 96-cell flats and grown in the greenhouse. For apex tissue collection, seeds

were germinated, and seedlings were transplanted as above. Vegetative apical meristem together with the two youngest/smallest

leaf primordia were collected 4 days after transplanting (Park et al., 2012). Eight to twelve apices were combined as one biological

replicate and three replicates were collected for each of a total of 23 accessions. Total RNA was extracted using the RNeasy Plant

Mini Kit (QIAGEN) and treated with the RNase Free DNase Set (QIAGEN) according to the manufacturer’s instructions. Total RNA

samples were sent to the Genomic Diversity Facility at Cornell University for high-throughput 30 RNA (single-end, read length =

75bp) as described (Kremling et al., 2018).

For quantitative RT-PCR, seeds were germinated on moistened filter paper at 28�C in dark. After germination, seedlings at similar

stages were transferred to soil in 96-cell plastic flats and grown in the greenhouse. Shoot apices were collected at the transition and

floral meristem stage of meristem maturation (Park et al., 2012), and immediately flash-frozen in liquid nitrogen. Total RNA was ex-

tracted as described above. 100 ng to 1 mg of total RNAwas used for cDNA synthesis using the SuperScript III First-Strand Synthesis

System (Invitrogen). qPCR was performed with gene-specific primers using the iQ SYBR Green SuperMix (Bio-Rad) reaction system

on the CFX96 Real-Time system (Bio-Rad). Primer sequences are available in Table S6.

NSGT1/2 expression analysis
Published RNA-seq data of tomato fruit pericarp tissue from 405 accessions were downloaded from SRA PRJNA396272. Reads

were trimmed by quality using Trimmomatic (ILLUMINACLIP:TruSeq3-PE-2.fa:2:40:15:1:FALSE LEADING:30 TRAILING:30 MIN-

LEN:100) and aligned to the cDNA annotation of reference genome sequence of tomato (SL4.0) using kallisto quant (Bray et al.,

2016). The output of kallisto generates normalized transcripts per million reads (TPM) which was used for quantifying NSGT1/2

expression. Because only one copy of NSGT1/2 is annotated in the SL4.0 and sequences of NSGT1 and NSGT2 are highly similar,

we used the TPM of the annotated copy of NSGT (Solyc09 g089585) to represent the expression level of both NSGT1 and NSGT2.

TMPs are in Table S5C.

Metabolite profiling
Published fruit guaiacol contents were obtained from Tieman et al. (2017). Tominimize environmental effects, only data from one field

season (2015) were used (Table S5D).

Fruit guaiacol and methylsalicylate contents in our newGWAS panel were quantified as previously described (Tieman et al., 2017).

Briefly, at least six fruits (two fruits for each replicate) of red ripe stage were collected from each variety. Volatile compound identi-

fication was determined by gas chromatography-mass spectrometry and co-elution with known standards (Sigma-Aldrich, St. Louis

MO). Metabolite contents are in Tables S5E and S5F.

30 RNA-seq data processing and gene expression analysis for individual duplication locus
30 RNA-seq reads were trimmed by quality using Trimmomatic (v0.36, ILLUMINACLIP:TruSeq3-SE.fa:2:30:10 LEADING:30 TRAIL-

ING:30 MINLEN:30 HEADCROP:12) and mapped to SL4.0 reference genome using STAR with default parameters (Dobin et al.,

2013). Bam files generated by STAR were sorted by read name and gene expression was quantified as uniquely mapped reads

to annotated gene features in the ITAG4.0 reference annotation using HTSeq-count (–format = bam–order = name–stranded =

no–type = exon–idattr = Parent) (Anders et al., 2015). Gene counts were processed in R for visualization. First, we filtered expressed

genes by only keeping genes with sum of counts across all samples greater than the sum of replicates. Then the count table was

imported into R package ‘‘DESeq2’’ (Love et al., 2014) and normalized counts were used for making boxplots.

Generation of F2 populations segregating for the fw3.2 duplication or promoter SNP
The fw3.2 duplication and the derived allele of the promoter SNP are highly, but not completely associated. From our collection of

accessions, we carefully selected four pairs of accessions carrying either single or double copies of fw3.2 but fixed at the promoter

SNP (M9) of KLUH and all other known fruit weight QTL genes (Figure S5D). Four bi-parental F2 populations were developed from

each pair of accessions, so that the duplication of fw3.2 would segregate. We genotyped the F2 plants by fw3.2 duplication markers

and markers flanking the entire duplicated region. Similarly, six bi-parental F2 populations that segregated for the promoter SNP but

fixed as the single-copy of fw3.2 and other known fruit weight QTL genes were developed. We genotyped F2 plants using M9

markers. In each population, ten homozygous F2 plants carrying each of the contrasting genotype were grown in the field. At harvest,

we selected 15 to 20 large fruits after mature green stage and recorded their average weight to represent the potential of largest fruit

from a single plant. Poor fruit setting was observed in population 19S313 so only about 10 representative fruits were used for each

plant. In extreme cases, the fruit weight of three plants were represented by less than 5 fruits. Fruit weight data are in Table S5G.

CRISPR-Cas9 mutagenesis, plant transformation, and selection of mutant alleles
CRISPR-Cas9 mutagenesis and generation of transgenic tomato was performed following our standard protocol (Brooks et al.,

2014). Briefly, guide RNAs (gRNAs) were designed using the CRISPRdirect tool (https://crispr.dbcls.jp/) (Naito et al., 2015). Binary
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vectors for gRNAs and Cas9 were assembled using the Golden Gate cloning system as described (Rodrı́guez-Leal et al., 2017; Soyk

et al., 2017; Werner et al., 2012). Final binary vectors were transformed into the tomato cultivar M82 by Agrobacterium tumefaciens-

mediated transformation through tissue culture (Gupta and Van Eck, 2016). Transplanting of first generation transgenic (T0) plants

and genotyping of CRISPR-generated mutations were performed as Soyk et al. (2017). Briefly, CRISPR-targeted region was PCR

amplified and wild-type (WT) size products were sequenced for T0 plants and those with mutations were selfed or crossed to WT

M82 plants for further characterization of mutant alleles. All gRNA sequences are listed in Table S6.

Generation of hybrid plants for different KLUH dosages
To test the dosage-dependent effect of KLUH in an isogenic background with uniform ‘‘cherry’’ fruit type, the fertile T0 plant with

CRISPR-Cas9 targeting SlKLUH (slkluhCR T0-1) was crossed with the SP accession LA1589. About half of F1 plants carried the

Cas9 transgene (1:1 segregation of transgene). Analyses were focused on F1 plants that did not inherit the Cas9 transgene, because

they are a fixed, uniform genotype. In contrast, plants with the Cas9 transgene would be genetically intractable for dosage analyses,

because of the random chimerism that occurs within individual plants carrying the Cas9 transgene. From eight individual F1 plants

without theCas9 transgene (genotypic group B),KLUH gene PCRproducts were cloned and eight individual cloneswere sequenced.

All eight plants were confirmed to have only mutant slkluh alleles and a WT SpKLUH allele (Figure S5F). Sepal length, flower length

and fruit weight were quantified from these plants. Most of the F1 plants with the Cas9 transgene showed slightly smaller floral or-

gans, and several of these plants had extremely small floral organs and no fruit set. From four individual F1 plants with theCas9 trans-

gene that showed tiny floral organs (genotypic group C), sepal length and flower size were quantified. To determine whether this ef-

fect was due to trans-targeting of SpKLUH, two plants with extremely small floral organs were randomly selected and sequenced for

multiple PCR-cloned KLUH alleles. Consistently, sequencing of the two plants showed only mutant alleles for SlKLUH and SpKLUH

(mutant alleles and their combinations are shown in Figures S5F and S5G), consistent with the CRISPR-Cas9 trans-targeting the

SpKLUH gene copy. WTM82 was crossed with LA1589 and the F1 plants were used as controls. Quantification data of sepal, flower

length and fruit weight are in Tables S5H and S5I.

STM3 Phylogenetic analyses and sequence analyses
Sequences of homologous proteins of STM3 and TM3 were obtained from tomato and Arabidopsis genome and aligned using the

ClustalW2.1 program in Geneious 11.1.5. Phylogenetic tree was constructed using ‘‘Geneious Tree Builder’’ with Jukes-Cantor ge-

netic distance model and Neighbor-Joining method with 1,000 bootstrap replicates. STM3 and TM3 fell in the same clade with Ara-

bidopsis flowering time regulator SOC1 (Lee and Lee, 2010).

Delta SNP index plot and genome coverage plot
Mapping of genomic position of sb1 was reported in Soyk et al. (2019). Briefly, F2 segregation population was generated from

crosses between a branchedM82 j2TE ej2W double mutant with an unbranched j2TE ej2W doublemutant (Fla.8924). A group of exces-

sively branched inflorescences (6–36 branches) and a group of clearly suppressed plants (1–4 branches) were selected. An equal

amount of tissue from each plant (�0.2 g) was pooled for DNA extraction for the two groups using standard protocols. Libraries

were prepared with the Illumina TruSeq DNA PCR-free prep kit from 2 mg genomic DNA sheared to 550 bp insert size and sequenced

on an Illumina NextSeq platform at the CSHL Genome Center. After aligning reads to reference genome (SL3.0), SNPs were called

with samtools/bcftools (Li, 2011; Li et al., 2009) using read alignments for the two genomic DNA sequencing pools in addition to the

M82 (Bolger et al., 2014a) and Fla.8924 (Lee et al., 2018) parents. Called SNPs were then filtered for bi-allelic high-quality SNPs at

least 100 bp from a called indel using bcftools (Li, 2011). Read depth for each allele at segregating bi-allelic SNPs in 100-kb sliding

windows (by 10 kb) was summed for the various sequencing pools and allele frequencies were calculated. Finally, the difference in

allele frequency (SNP index) between the branched and unbranched pools was calculated and plotted across the 12 tomato chro-

mosomes. One of the two regions that exceeded a genome-wide 95% cut-off in SNP index was located on chromosomes 1 and was

named sb1. The candidate interval based on SL3.0 is SL3.0ch01:80006250-86570024.

To show the genome coverages at the sb1 locus in M82, M82 j2TEej2W, Fla.8924 and S. pimpinellifolium, we calculated the

coverage from Illumina data using bedtools multicov only counting properly paired reads in 10-kb windows across chromosome

1. Depths in the four genotypes were normalized by dividing by the average depth using R.

Generation of F2 populations segregating for sb1 CRISPR alleles, j2TE and ej2W

Homozygous sb1CR-1 and sb1CR-del plants were each crossed with M82 j2TEej2W, respectively, to construct two F2 populations

segregating at those three loci. In the F2 generation, plants were first genotyped for j2TE and ej2Wmutations at seedling stage in flats.

All double mutants were transplanted and further genotyped for CRISPR alleles and quantified for inflorescence complexity/branch-

ing. Genotyping primer sequences are in Table S6. Phenotype related to sb1 are in Tables S5J–S5L.

QUANTIFICATION AND STATISTICAL ANALYSIS

‘‘n’’ is defined in all relevant figure legends. All statistical tests were performed in R. Significance is only ever defined for the SV dif-

ferential expression analysis (Figure 3C) (Tables S4A and S4B) and it is defined as a p value less than 0.05. Two-sidedMann-Whitney
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U tests were used for analysis in Figures 3C–3F. The Mann-Whitney U test provides a robust estimate to compute the significance of

the expression change that does not depend on any assumption of underlying distributions. The p values for these tests underwent

FDR correction with the Benjamini-Hochberg procedure. Adjusted p values were aggregated using Fisher’s method and a harmonic

mean estimate. Detailed methods for these analyses can be found in ‘‘The Impact of SVs on Gene Expression.’’ For expression anal-

ysis in Figures 4E, 5C, 6E, and S5A, numbers of accessions for each genotype are presented in the figures and differences between

groups were compared using two-tailed, two-sample t tests. Fruit guaiacol and methylsalicylate contents were compared between

genotypes using two-tailed, two-sample t tests. For quantitative analysis in sepal length, flower length, fruit weight and inflorescence

complexity n = number of flowers and inflorescences quantified was used for two-tailed, two-sample t tests. The number of plants

(n = ) used for each genotype is also labeled in the figures. For above analysis, all data points were plotted as single dots in the box-

plots. For expression analysis with qRT-PCR, three biological replicates of pooled meristems were used for each genotype and two

technical replicates were performed for each biological replicate. Mean values of normalized expression were compared using two-

tailed, two samples t tests. For flowering time quantification, number of plants of each genotype is labeled in the figure. Means ± s.d.

were shown and mean values between groups were compared by two-sample t tests.
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Figure S1. Sample Selection and Long-Read Sequencing, Related to Figure 1

(A and B) Two SNP-based phylogenetic trees for distinct collections of tomato accessions (see STAR Methods) (Razifard et al., 2020; Soyk et al., 2019). Ac-

cessions represented in these trees and selected for long-read sequencing are marked with circles or asterisks along the circumference.

(C) Overview of the SV calling pipeline. The process involves aligning ONT long-reads to the SL4.0 reference genome and then calling, filtering and annotating SVs

(see STAR Methods).

(D) Histograms of long-read coverage across the SL4.0 genome. Two representative accessions from each taxonomic group are displayed. Average read depths

range from 50X to 60X and coverage falls along a Poisson distribution, indicative of genome wide even coverage.

(E) Euler diagrams (http://eulerr.co) depicting the concordance of SV calls derived from short versus long-reads. A total of four accessions are examined: 2 SLL

(top) and 2 SLC (bottom).

(F) Distance matrices depicting pairwise hamming distances between SLL, SLC and SP accessions, graphically represented as heatmaps. The dendrograms

represent a hierarchical clustering of the accessions. The distribution of hamming distances is depicted in the heatmap color legends. The larger hamming

distances in SLC and SP relative to SLL indicate greater SV diversity in these two groups. Clustering was done using the heatmap.2 function in R with default

parameters.
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Figure S2. MAS2.0 Assembly and Annotation, Related to STAR Methods

(A) Diagram depicting the MAS2.0 assembly and annotation pipeline.

(B) ‘‘Nchart’’ showing the contiguity of all 14MAS2.0 assemblies compared to the SL4.0 reference genome. An ‘‘Nchart’’ is a generalization of the N50metric (50%

on the x axis) in graphical form.

(C–P) Dotplots with respect to the SL4.0 reference for each of the 14 MAS2.0 assemblies.

(Q) The percentage of ITAG4.0 genes that are anchored in each of the 14 MAS2.0 assemblies.

(R) The total number of pan-genome genes anchored in each of the 14 MAS2.0 assemblies.
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Figure S3. SV Hotspot and Introgression Analysis, Related to Figure 2

(A–L) Twelve panels are presented, one for each of the 12 chromosomes in the SL4.0 reference genome. Blue heatmaps at left depict the number of SVs in 1Mbp

non-overlapping windows along the reference chromosome. Rows of green heatmaps at top right correspond to the top 45 rows (all SLL accessions) of the blue

heatmap. The green heatmap shows the Jaccard Similarity for each SLL accession and for each 1Mbp window to the SP accessions (see STARMethods). Green

heatmap at bottom right (same row order as the top right green heatmap) also shows SV Jaccard Similarity but with respect to all SLC accessions. Specifically,

dark green heatmap cells show 1Mbpwindows that show high SV similarity with at least one SP (top) or SLC (bottom) accession. Grey cells in the green heatmap

represent ‘‘NA’’ values for regions of the genome that did not have enough SVs to perform the similarity calculations.

(M) The distribution of SV counts in 1 Mbp windows (blue heatmaps from A-L) for the M82 genome.
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Figure S4. Differential Expression ROCs, Related to Figure 3

(A) Distribution of the absolute value of the log fold changes of mean gene expression, separated by SV annotation and tissue types. All SV-gene pairs are shown

on top, while only significant pairs are shown on the bottom. Numbers beneath boxplots are the number of SV-gene pairs. Fold changes above 27 are not shown.

(B) Diagram of the classifier predicting the presence of a nearby SV given differential gene expression. The diagramdepicts a simplified scenario wherein there is a

total of three expressed genes, three SVs, and three SV-gene pairs. (I) One of the example SV-gene pairs, with SV-1 overlapping the upstream region of gene-1. (II)

Accessions are split into two groups: with and without SV-1. Differential expression of gene-1 between these two groups is tested with a Mann-Whitney U test,

(legend continued on next page)

ll
Article



yielding a p value. (III) The test is performed across the same accession split for the two other expressed genes (gene-2 and gene-3). The original gene (gene-1) is

positively labeled (+, cyan shade), while the other genes are negatively labeled (-). (IV) The p values for all tests are ranked, from themost (1) to the least significant

(3). (V) Steps I - IV are repeated for all SV-gene pairs using their respective SV accession splits. (VI - VIII) The p value ranks and gene labels are combined across all

SV-gene pairs. The classifier iteratively considers all p value rank cutoffs and predicts ‘‘+’’ or ‘‘-’’ for all genes at/above or below the cutoff, respectively. The

associated ROC curve is built by calculating the true and false-positive rates for each cutoff.

(C–E) ROCs for the nine SV annotation types for cotyledon, root, and apical meristem tissue respectively. ‘‘del,’’ ‘‘ins’’ and ‘‘dup’’ are deletions, insertions and

duplications respectively. ‘‘5utr’’ and ‘‘3utr’’ refer to 5 kbp up and downstream of genes respectively. ‘‘del CDS’’ refers to deletions of the CDS start site, whereas

‘‘insCDS’’ refers to insertions in CDS exons. ‘‘int’’ refers to introns.

(F) Volcano plots for specific SV-gene pair examples (extension of Figure 3F). Gene diagrams are not drawn to scale.
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Figure S5. A Tandem Duplication and Not a Promoter SNP of the Slkluh Gene Is Responsible for the Fw3.2 Fruit Size Domestication QTL,

Related to Figure 5

(A) Expressions of genes within the fw3.2 duplication are approximately two-fold higher in accessions carrying the fw3.2 duplication. Genes within the duplication

are in red font. RNA-seq boxplots of duplicated and flanking genes from cotyledons (left) and roots (right) are shown. Each point is one biological replicate from

one accession (see STAR Methods). n, number of accessions.

(B) Fruit weight quantification in three additional F2 populations segregating for the fw3.2 duplication but fixed for the promoter SNP. Increased fruit weight is

associated with the duplication in all three families. n: number of plants measured for each genotype.

(C) Fruit weight quantification in six F2 populations segregating for the promoter SNP (M9) of SlKLUH but fixed for the fw3.2 duplication. There is no consistent

association between the M9 SNP and fruit weight. n, number of plants measured for each genotype.

(D) Table showing accessions and genotypes at five known fruit weight QTLs in the 10 F2 populations used to test associations between fruit weight and the fw3.2

duplication or the promoter SNP.

(E) Table showing CRISPR-Cas9 generated mutant alleles of SlKLUH in three independent T0 plants. g1 and g4 refer to guide RNA1 and guide RNA4,

respectively.

(F) Mutated spkluh alleles in genotypic group C. Red font, guide RNA targets. Cyan font, mutations. An LA1589 SNP (blue font) permits distinction of KLUH allele

parent-of-origin.

(G) Summary of Sanger sequencing resolved alleles of slkluh and spkluh in individual F1 plants of genotypic group C. Allele names in the table refer to Figures 5G

and S5G.

p values in (A, B and C) are based on two-tailed, two-sample t tests.

(H) Summary of Sanger sequencing resolved alleles of slkluh and SpKLUH in individual F1 plants of genotypic group B. These plants were used for quantifying

floral organ size and fruit weight. Allele names in the table refer to Figure 5G.
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Figure S6. Expression, Flowering, and Inflorescence Branching Phenotypes of the sb1CR Mutation and Allele Distribution of STM3 Dupli-

cation, Related to Figure 6

(A) Phylogenetic tree of STM3-TM3 paralogous proteins in tomato and Arabidopsis. Bootstrap values (%) from 1,000 replicates are shown.

(B) Quantification of relative expressions of STM3 and TM3 in transition and floral meristems in Fla.8924 j2TE ej2W and M82 j2TE ej2W genotypes by quantitative

reverse transcription PCR (qRT-PCR). UBIQUITIN is used as internal control. Expressions are normalized to those in Fla.8924 and are shown as means ± s.d.

Three biological pooled meristem samples and two technical replicates of each were assayed.

(C) Genomic short-read resequencing coverage map showing an increase in short reads at the STM3 locus in accessions with the SB1 duplication compared to

those with single copy sb1.

(D) Schematic showing positions of guide RNAs used andmutant alleles recovered in the two CRISPR-Cas9 targeting of the STM3-TM3 locus. Small indel alleles

of stm3 and tm3 in sb1CR-1 (top) and a large deletion allele removing two copies of STM3 and TM3 in sb1CR-del (bottom) are shown. Orange box shows the

common exon 2 between STM3 and TM3 and black box and thinner black box show exons and UTRs, respectively. Red font, guide RNA targets. The cyan font

shows mutations.

(E) Flowering time measured by number of leaves to first inflorescence in wild-type control (M82) and the two CRISPR alleles of sb1. n, number of plants

phenotyped.

(F) Schematic depicting the sb1CR1-1 CRISPR allele at the STM3-TM3 locus (top). Representative inflorescences from the indicated genotypes showing sup-

pression of branching in j2TE ej2w by sb1CR-1 (bottom). Arrowheads mark branch points.

(legend continued on next page)
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(G) STM3 duplication allele frequency in distant wild tomato species, the closest wild relatives of domesticated tomato (S. galapagense, S. cheesmaniae,

S. pimpinellifolium), ‘‘admixtures,’’ early tomato domesticates (S. lyc. var. cerasiforme), and cultivated tomatoes (S. lycopersicum). The number of accessions in

each group is indicated.

p values in (B and E) are based on two-tailed, two-sample t tests.
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