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Abstract

The sizes of plant organs such as fruit and seed are crucial yield components. Tomato KLUH underlies the locus 
fw3.2, an important regulator of fruit and seed weight. However, the mechanism by which the expression levels of 
KLUH affect organ size is poorly understood. We found that higher expression of SlKLUH increased cell proliferation 
in the pericarp within 5 d post-anthesis in tomato near-isogenic lines. Differential gene expression analyses showed 
that lower expression of SlKLUH was associated with increased expression of genes involved in lipid metabolism. 
Lipidomic analysis revealed that repression of SlKLUH mainly increased the contents of certain non-phosphorus 
glycerolipids and phospholipids and decreased the contents of four unknown lipids. Co-expression network analyses 
revealed that lipid metabolism was possibly associated with but not directly controlled by SlKLUH, and that this gene 
instead controls photosynthesis-related processes. In addition, many transcription factors putatively involved in the 
KLUH pathway were identified. Collectively, we show that SlKLUH regulates fruit and seed weight which is associated 
with altered lipid metabolism. The results expand our understanding of fruit and seed weight regulation and offer a 
valuable resource for functional studies of candidate genes putatively involved in regulation of organ size in tomato 
and other crops.
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Introduction

The weight/size of plant organs is critically important for the 
survival of the species (Gonzalez et al., 2009). The final weight 
of a plant organ is influenced by the combined effect of genetic 
and environmental signals during growth and development of 
the plant (Tsukaya, 2003; Horiguchi et al., 2005). The weight 
of organs such as seed, fruit, root, tuber, and leaf is of import-
ance to plant yield as this is one of the most critical agronomic 
traits in crop breeding (Ge et al., 2016).

The regulation of seed and leaf size has been studied exten-
sively in rice and Arabidopsis, respectively. These studies have 
led to the discovery of at least 88 key organ size regulators 
(Gonzalez et al., 2009; Li and Li, 2016; Vercruysse et al., 2020). 
The pathways that control seed size include KLUH, ubiquitin–
proteasome, G-protein signaling, mitogen-activated protein 
kinase (MAPK), and plant hormones (Gonzalez et al., 2009; Li 
and Li, 2016; Li et al., 2019). For leaf size, in addition to KLUH, 
the pathways that control this trait are DA1–enhancer of DA1 
(EOD1), growth regulating factor (GRF)–GRF-interacting 
factor (GIF), SWITCH/sucrose non-fermenting (SWI/SNF), 
and plant hormones (Vercruysse et al., 2020). Fruit weight is 
most extensively studied in tomato (van der Knaap et al., 2014; 
Mu et al., 2017). The pathways regulating fruit weight are also 
KLUH, as well as cell number regulator (CNR), cell size regu-
lator (CSR), members of the WUS–CLV3 pathway, and plant 
hormones (van der Knaap and Østergaard, 2018; Rothan et al., 
2019). Remarkably, one of the shared components in seed, leaf, 
and fruit size regulation is KLUH. However, the role of KLUH 
and its relationship to other organ size regulatory pathways is 
not well understood.

KLUH is the founding member of the CYP78A subfamily 
that was first identified in Arabidopsis to stimulate organ size by 
promoting cell proliferation (Anastasiou et  al., 2007; Adamski 
et al., 2009). KLUH is proposed to be involved in the production 
of an unknown signaling molecule that non-cell-autonomously 
regulates cell proliferation (Anastasiou et  al., 2007; Adamski 
et  al., 2009; Eriksson et  al., 2010). However, the exact mo-
lecular and biochemical nature of the mobile signal remains 
unknown. Notably, other members of the CYP78A subfamily 
are also associated with controlling organ size in Arabidopsis 
(Wang et al., 2008; Fang et al., 2012; Sotelo-Silveira et al., 2013; 
Yang et  al., 2013) as well as in other plant species (Ma et  al., 
2013; Nagasawa et al., 2013; Yang et al., 2013; Ma et al., 2015a, 
b; Wang et al., 2015a; Zhao et al., 2016; X. Sun et al., 2017; Qi 
et  al., 2017; Maeda et  al., 2019). In rice, GIANT EMBRYO 
(GE; CYP78A13) plays an important role in controlling the 
size balance of the embryo and endosperm. This gene is essen-
tial for embryo development and grain yield (Nagasawa et al., 
2013; Yang et al., 2013). The rice CYP78A OsBSR2 (BROAD- 
SPECTRUM RESISTANCE2) is associated with seed weight 
and disease resistance (Maeda et al., 2019). The maize CYP78A 
PLASTOCHRON1 (ZmPLA1) extends the duration of cell 
division, leading to increased seed yield and stover biomass (X. 

Sun et al., 2017). In soybean, wheat, sweet cherry, and pepper, 
GmCYP78A10, GmCYP78A72, TaCYP78A3, TaCYP78A5, 
PaCYP78A9, and CaKLUH, respectively, play important roles 
in or are strongly associated with regulating seed and fruit 
weight (Chakrabarti et al., 2013; Ma et al., 2013; Ma et al., 2015a, 
b; Wang et al., 2015a; Zhao et al., 2016). Combined, these studies 
demonstrate the importance of CYP78A as a critical compo-
nent of organ size regulation in plants.

The domestication-related CYP78A gene was cloned 
from tomato a few years ago and considered the ortholog of 
Arabidopsis KLUH (Zhang, 2012; Chakrabarti et  al., 2013). 
Tomato KLUH underlies the fruit weight locus fw3.2 and is a 
positive regulator of fruit weight by increasing the number of 
cell layers in the pericarp (Chakrabarti et al., 2013). We recently 
demonstrated that the duplication of SlKLUH is the causative 
variant at the fw3.2 locus, accounting for differential expression 
that is correlated to gene copy number (Alonge et al., 2020). 
Given that SlKLUH does not affect cell size (Chakrabarti et al., 
2013), it is likely to function in the cell proliferation phase 
in pericarp at the early stages of fruit development. However, 
further cellular analyses at different fruit developmental stages 
are needed to determine when changes in the number of cell 
layers become evident.

In this study, we performed histological comparisons of 
fw3.2 near-isogenic lines (NILs) to investigate the changes 
in the number of cell layers in the pericarp at six devel-
opmental time points. We analyzed the RNA sequencing 
(RNA-seq) data from developing pericarp and seed in fw3.2 
NILs that only differ for the allele at the locus as well as 
lines that are transgenically down-regulating the expres-
sion of SlKLUH by RNAi (RNAi-2Q1). The results showed 
many differentially expressed and co-regulated genes that 
have been implicated in organ size, lipid metabolism, and 
photosynthesis. We also analyzed the lipid profiles of 5 days 
post-anthesis (DPA) fruits from the NILs and RNAi-2Q1 
and identified several lipid composition categories that were 
differentially accumulating. Moreover, the overexpression 
of a transcription factor (TF) gene SHINE1 (SlSHN1) that 
affects lipid metabolism, resulted in a significant decrease 
in fruit and seed weight. Combined, our findings imply a 
tight relationship between SlKLUH-mediated regulation of 
organ weight and lipid metabolism as well as photosynthesis-
related processes.

Materials and methods

Plant materials and growth conditions
NILs with the cultivated and wild-type allele of fw3.2, named 
fw3.2(ys) and fw3.2(wt), respectively, RNAi lines down-regulating the 
expression of SlKLUH (RNAi-2Q1 and RNAi-2G2), and SlSHN1-
overexpressing transgenic lines were described previously (Zhang, 
2012; Chakrabarti et al., 2013; Al-Abdallat et al., 2014). The seeds of 
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the cd2 mutant and Ailsa Craig (AC) control were obtained from Dr 
Cornelius Barry, Michigan State University (Nadakuduti et al., 2012). 
The plants were grown in the greenhouse under a 16 h light/8 h dark 
photoperiod in Athens, GA, USA.

Developing fruit analyses for fw3.2(ys) and fw3.2(wt)
Individual flowers were tagged at anthesis every morning. Developing 
fruits were collected at anthesis, 5, 7, 10, and 20 DPA, and breaker stage. 
Developing fruits were bisected equatorially. One half of each fruit was 
scanned for fruit length and width measurement using ImageJ, and the 
other half was used for histological analysis.

For the histological analysis of ovaries and developing fruits at 5 
and 7 DPA, the samples were fixed overnight in 75% ethanol and 
25% acetic anhydride. Samples were then incubated in 80% ethanol 
at 80 °C and rehydrated in 50% and 30% ethanol for 10 min. Samples 
were rinsed with ddH2O for 10 min, followed by clearing at room 
temperature in 0.2 M NaOH/1% SDS while shaking at 30–40 
rpm. After 24 h, the samples were further cleared with ClearSee so-
lution (10% xylitol, 15% sodium deoxycholate, 25% urea; VWR 
International) for 3 d at the same shaking speed and temperature. The 
samples were rinsed with ddH2O for 5 min and stained for 30 min 
in calcofluor (0.25% Fluorescent Brightener 28; Sigma) in the dark. 
Lastly, the samples were rinsed in water and mounted in mounting 
medium CitiFlour (Electron Microscopy Supplies). The sections were 
imaged using a Zeiss LSM 880 upright confocal microscope and sam-
ples were excited at 405 nm with an emission band of 410–550 nm.

For developing fruits at 10 DPA, 20 DPA, and breaker stage, hand 
sections were stained with a solution containing one part 0.5% toluidine 
blue and two parts distilled water for a few seconds. Sections were then 
rinsed with ddH2O. Images of the stained sections were taken using an 
Olympus DP70 camera that was mounted on an OLYMPUS MVX10 
optical microscope using an Olympus MVX-TVO.63XC adaptor. The 
generated pictures were used for pericarp cell layer, maximum cell size, 
and thickness measurements with ImageJ software as previously described 
(Ramos, 2018). All phenotypic evaluations were performed with two 
biological replications, each with at least four plants per genotype. For 
each time point, at least two fruits per plant were analyzed.

Phenotypic evaluations of SlSHN1-overexpressing transgenic 
lines
For fruit weight analysis, 10 fruits at breaker or turning stage from each 
plant were weighed individually. For seed weight analysis, 50 seeds from 
each plant were counted and weighed. Three fruits at breaker stage from 
each plant were used for pericarp cell layer and thickness analysis as pre-
viously described (Ramos, 2018). All phenotypic evaluations were per-
formed independently with two biological replications, each with at least 
three plants per genotype.

Tissue collection and data processing of RNA-seq data
Tissues for RNA extraction were collected with four replicates from 
pericarp and seed at 5, 7, and 10 DPA in fw3.2 NILs and three replicates 
from pericarp and seed at 7 DPA of the RNAi-2Q1 and RNAi-2G2 lines 
down-regulating SlKLUH. RNA-seq library preparation and sequencing 
were previously described (Chakrabarti et al., 2013). All clean reads for 
samples from fw3.2 NILs and the RNAi lines of SlKLUH are available 
in the National Center for Biotechnology Information Sequence Read 
Archive (NCBI SRA) under the accession numbers SRA068200 and 
SRA068201 (Chakrabarti et al., 2013).

The read mapping was performed using the latest version of the 
Tuxedo protocol with HISAT2 and StringTie (Pertea et al., 2016). After 

filtering out adaptor sequences, low-quality reads, and ribosomal reads, the 
clean reads from each library were mapped to the Heinz 1706 tomato 
genome version SL3.0 using HISAT2. To quantify all the genes in ITAG 
(International Tomato Annotation Group) version 3.20, the mapping results 
were normalized via Stringtie to obtain RPKM (reads per kilobase per mil-
lion mapped reads). Summary statistics for each of the RNA-seq libraries 
are shown in Supplementary Table S1. Correlations between samples were 
determined by using the Spearman correlation coefficient (SCC) to check 
the reproducibility among replicates. For principal component analysis 
(PCA) of sample replicates, the count data were rlog transformed using 
DESeq2 and the PCA plot was generated using the ggplot2 R package.

Differential gene expression analysis
Differential gene expression analysis was performed using the DESeq2 
R package (Love et al., 2014) with the count data which were extracted 
with a Python script included in Stringtie (http://ccb.jhu.edu/software/
stringtie/dl/prepDE.py). The genes that were significantly differentially 
expressed in pericarp and seed at each developmental time point be-
tween the NILs as well as in 7 DPA pericarp and seed between fw3.2(ys) 
and RNAi-2Q1 were identified by Wald test. Genes with |log2ratio|>2 
and a false discovery rate (FDR) significance score <0.05 were deter-
mined to be significantly differentially expressed genes (DEGs). A dif-
ferential expression analysis of RNA-seq data from the NILs was also 
performed using linear factorial modeling to further assess the effects of 
genotype, the interaction between genotype and developmental stage 
(G×D), and the interaction between genotype and tissue (G×T) on the 
gene expression patterns. The likelihood ratio test was used to assess 
three separate null hypotheses. Null hypothesis 1 was tested to identify 
genes with significant genotype effects with full model=~genotype+ti
ssue+developmental stages and reduced model=~tissue+developmental 
stages; Null hypothesis 2 was tested to identify genes significantly af-
fected by G×D with full model=~genotype+tissue+developmental 
stages+genotype:developmental stages and reduced model=~genot
ype+tissue+developmental stages; Null hypothesis 3 tested whether 
each gene was affected by G×T with full model=~genotype+tissue+
developmental stages+genotype:tissue and reduced model=~genotype
+tissue+developmental stages. The P-values were corrected using the 
Benjamini–Hochberg method, and the threshold of corrected P-value 
<0.05 was used for selecting DEGs in the three null hypotheses. A fur-
ther filtration was performed to eliminate the genes expressed at a low 
level. Genes with average RPKM>1 among pericarp and seed samples 
were considered as DEGs. Additionally, the linear factorial modeling can 
only be applied to sufficiently large data sets with multiple treatments 
or time points. Since there is only one developmental time point in 
RNAi-2Q1, we cannot perform the linear factorial modeling with that 
specific dataset.

Lipid profiling
Lipid profiling was done at RIKEN, Japan, using LC–quadrupole time-
of-flight–MS (LC-Q-TOF-MS) as described before (Okazaki et  al., 
2013; Okazaki and Saito, 2018). Briefly, 5 DPA whole fruit samples from 
fw3.2(ys), fw3.2(wt), and RNAi-2Q1 were pooled from four plants each, 
and each sample was replicated five times. These samples were lyophil-
ized and milled to a fine power. The sample powder was extracted with 
a mixture of chloroform, methanol, and water by the method of Bligh 
and Dyer (Bligh and Dyer, 1959; Okazaki and Saito, 2018). The crude 
lipid extract was finally reconstituted in ethanol and subjected to LC-MS 
analysis (Okazaki and Saito, 2018). Electrospray ionization was employed 
for sample ionization. The lipidome dataset obtained in the negative ion 
mode was subjected to multivariate analysis, orthogonal projection to a 
latent structure-discriminant analysis (OPLS-DA) (Wiklund et al., 2008), 
to find the discriminative metabolites among tested samples.
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Construction and visualization of the co-expression network
The co-expression network analysis was performed in R using the 
Weighted Correlation Network Analysis (WGCNA) package (Langfelder 
and Horvath, 2008). The co-expression network was constructed using 
RNA-seq data from each NIL independently. For each co-expression 
network, the genes (cumulative RPKM >6 and variance >1) used for 
the network were from 24 samples of three time points (5, 7, and 10 
DPA), using each biological replicate as an individual dataset (total of 
24 samples for each network). To show an approximate scale-free top-
ology, the soft thresholding power of β=17 was chosen for both networks 
by the pickSoftThreshold function in the WGCNA package. The mod-
ules were obtained using the one-step network construction function 
(blockwiseModules) with default parameters. The top 50 genes with the 
highest kME values were regarded as intramodular hub genes in this study. 
The networks were visualized using Cytoscape _v.3.7.1.

Gene Ontology (GO) enrichment analysis
GO enrichment analysis of the DEGs was performed using the topGO 
R package (Alexa et al., 2006; Alexa and Rahnenfuhrer, 2020). The ref-
erence GO annotation list was downloaded from Plant Transcriptional 
Regulatory Map (http://plantregmap.gao-lab.org/go.php). The signifi-
cantly enriched GO terms were determined by FDR-adjusted P-value 
<0.05. The heatmaps of DEGs and GO terms were generated using the 
pheatmap R package (Kolde, 2012).

Statistical analyses
Normality, Student’s t-test, and Duncan’s test were calculated for each trait 
using R software. The data of all the investigated traits follow a normal 
distribution as determined by Lilliefors test (Abdi and Molin, 2007).

Results

Fruit growth and histological comparisons of fw3.2 
NILs

Phylogenetic analysis revealed that SlKLUH was clustered 
into the same clade with Arabidopsis CYP78A5/KLUH and 
CYP78A10, wheat CYP78A5, and soybean CYP78A10 and 
CYP78A12 (Fig. 1) that act as key regulators of organ size 
(Anastasiou et al., 2007; Adamski et al., 2009; Yang et al., 2013; 
Ma et al., 2015b; Wang et al., 2015a; Zhao et al., 2016). Of these, 
AtCYP78A5 and TaCYP78A5 have been demonstrated to 
stimulate cell proliferation at the early stages of seed develop-
ment (Anastasiou et al., 2007; Adamski et al., 2009; Ma et al., 
2015b). To gain more insight into the function of SlKLUH 
in regulating fruit development, we explored fruit growth at 
six developmental time points from anthesis to breaker stage 
(Supplementary Fig. S1). Both fruit length and width started to 
show differences between 10 and 20 DPA (Supplementary Figs 
S1, S2A, B). This change in length and width was preceded by a 
significant change in the number of cell layers as early as 5 DPA 
(Fig. 2A–C; Supplementary Fig. S2C). The maximum cell size 
showed no significant difference between the NILs at breaker 
stage (Fig. 2D; Supplementary Fig. S2D) which is consistent 
with previous findings (Chakrabarti et al., 2013). The pericarp 
thickness started to show a significant difference between 10 
and 20 DPA which corresponded well to the increase in fruit 

size (Fig. 2E; Supplementary Fig. S2E). The significant differ-
ence in cell layers of the pericarp (Fig. 2C; Supplementary 
Fig. S2C) did not lead to a significant difference in pericarp 
thickness at 5, 7, and 10 DPA (Fig. 2E; Supplementary Fig. 
S2E), which was probably due to the small cell size (Fig. 2D; 
Supplementary Fig. S2D). These results indicate that SlKLUH 
stimulates pericarp cell proliferation during the early stages of 
fruit development (5–7 DPA).

Differential gene expression between the NILs during 
pericarp and seed development

To gain further insights into the molecular mechanisms of 
SlKLUH governing fruit and seed weight in tomato, a gene 
expression analysis was performed using RNA isolated from 
the NIL tissues corresponding to developing pericarp and seed 
at 5, 7, and 10 DPA. The SCC analysis showed high reprodu-
cibility between the four replicates, ranging from 0.97 to 0.98 
(Supplementary Fig. S3). Moreover, the PCA showed that the 
samples clustered based on tissue type and developmental time 
point but less based on genotype (Fig. 3A). This suggests that 
the overall transcriptome profiles did not differ dramatically 
between the NILs.

RNA expression analyses showed that SlKLUH 
(Solyc03g114940) was significantly more highly expressed in 
fw3.2(ys) than in fw3.2(wt) in most of the samples analyzed 
(Fig. 3B). DEGs between the NILs were identified by six 

Fig. 1.  Phylogenetic analysis of CYP78As from tomato, Arabidopsis, 
rice, wheat, soybean, maize, and sweet cherry. The alignment of protein 
sequences was performed using ClustalX 1.81, and the phylogenetic 
tree was constructed by MEGA4 using the neighbor–joining (NJ) method 
with the following parameters: Poisson correction, pairwise deletion, 
and bootstrap (1000 replicates; random seed). Tomato and Arabidopsis 
CYP78As are labeled with red and green dots, respectively.
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pairwise comparisons of pericarp and seed at each develop-
mental time point (Fig. 3C; Supplementary Dataset S1). In 
the small-fruited NIL fw3.2(wt), 48 unique DEGs exhibited 
significantly lower expression and 61 unique DEGs exhibited 
significantly higher expression at different time points in the 
developing pericarp and seed compared with the large-fruited 
NIL fw3.2(ys). Notably, fewer DEGs were found in seed (16 
unique genes) than in the pericarp (97 unique genes) (Fig. 
3C; Supplementary Dataset S1), demonstrating more changes 
in gene expression during the development of the pericarp 
than during development of the seed as a consequence of dif-
ferential expression of SlKLUH. This was despite the fact that 
SlKLUH itself was much more highly expressed in the seed 
(Fig. 3B). GO enrichment analysis of up-regulated DEGs in 
the pericarp of fw3.2(wt) indicated that the DEGs are enriched 
for three processes related to lipid metabolism, namely ‘Fatty 
acid metabolic process’ (six genes), ‘Cutin biosynthetic process’ 
(three genes), and ‘Monocarboxylic acid metabolic process’ 
(seven genes) (Fig. 3D). However, no significantly enriched 
biological processes were identified for the down-regulated 
DEGs in pericarp and in seed of fw3.2(wt). Consequently, 

this finding implied that lower expression of SlKLUH led to 
up-regulation of lipid metabolism-related processes.

To systematically explore the RNA-seq data, linear factorial 
modeling was applied to identify DEGs significantly affected by 
genotype, genotype by tissue interaction (G×T), and genotype 
by developmental stage interaction (G×D). A total of 72 DEGs, 
which were consistently up- or down-regulated in fw3.2(wt) 
across all samples, were identified with significant genotype ef-
fects (Supplementary Dataset S2). As expected, SlKLUH was a 
DEG significantly affected by genotype, with lower expression 
in pericarp and seed at all developmental stages in fw3.2(wt) 
compared with fw3.2(ys) (Fig. 3B; Supplementary Dataset S2). 
No DEGs were found with significant G×T and G×D effects.

RNA-seq analysis of the RNAi lines of SlKLUH

Even though the natural fw3.2 NILs show changes in SlKLUH 
expression, further down-regulation of the gene may lead to 
the identification of additional DEGs in the SlKLUH pathway. 
RNAi-2Q1 and RNAi-2G2 were two independent transgenic 
lines that down-regulated the expression of SlKLUH in the 

Fig. 2.  Histological analyses of the pericarp at six developmental time points in the fw3.2 NILs. (A) Representative sections of fw3.2(ys) pericarp. (B) 
Representative sections of fw3.2(wt) pericarp. Scale bars=100 µm (0, 5, 7, and 10 DPA) and 1 mm (20 DPA and breaker stage). (C–E) Cell layer (C), 
maximum cell size (D), and pericarp thickness (E) comparisons of the NILs. For the cell layer numbers at 10 DPA, 20 DPA, and breaker stage, the 
endoderm layer and several cell layers below the exoderm were not counted because they were difficult to discern in these sections, hence a decrease 
in cell layers from 7 to 10 DPA. Asterisks denote significant differences (*P<0.05; **P<0.01; ***P<0.001) as determined by Student’s t-tests. DPA, days 
post-anthesis. NS, non-significant difference.
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fw3.2(ys) background. These plants showed significantly re-
duced fruit and seed weight compared with fw3.2(ys) and 
fw3.2(wt) (Chakrabarti et al., 2013). RNA-seq was performed 
using total RNA isolated from the 7 DPA pericarp and seed 
of the RNAi-2Q1 and RNAi-2G2 lines. The correlation coef-
ficient between the three biological replicates of different tis-
sues varied from 0.97 to 0.98, indicating the high correlation 
among the samples (Supplementary Fig. S4). A PCA was per-
formed to obtain a general view of the transcriptome changes 
between the RNAi-2Q1 and RNAi-2G2 lines and their con-
trol fw3.2(ys). The analysis revealed that PC1 separated peri-
carp tissues from seed tissues, explaining 86% of the variance. 
PC2 separated the tissues based on genotype, explained 6% of 
the variance, and showed clear clustering in the pericarp based 
on genotype (Fig. 4A).

Given that the overall transcriptome profiles of 7 DPA 
pericarp and seed were similar between RNAi-2Q1 and 
RNAi-2G2 (Fig. 4A; Supplementary Fig. S4), we focused on 

RNAi-2Q1 expression data for further analysis. A total of 899 
and 247 DEGs were identified in 7 DPA pericarp and seed 
of the RNAi-2Q1 line, respectively (Fig. 4B; Supplementary 
Dataset S3). As expected, the total number of DEGs in the 
fw3.2(ys)–RNAi-2Q1 dataset was much higher than that of 
the fw3.2(ys)–fw3.2(wt) dataset (Figs 3C, 4B), possibly re-
sulting from the more extensive down-regulation of SlKLUH 
by RNAi compared with the NILs (Chakrabarti et al., 2013). 
In 7 DPA pericarp, six down-regulated and 33 up-regulated 
genes were shared in both datasets (Supplementary Fig. S5; 
Supplementary Table S2). Interestingly, SlKLUH was the only 
common DEG that was down-regulated in both RNA-seq 
datasets in 7 DPA seed (Supplementary Fig. S5; Supplementary 
Table S2).

Similar to the GO term enrichment of the up-regulated 
DEGs in pericarp of the fw3.2(wt), the DEGs that were 
up-regulated in RNAi-2Q1 pericarp were also enriched for 
‘Fatty acid metabolic process’, ‘Cutin biosynthetic process’, and 
‘Monocarboxylic acid metabolic process’ (Figs 3D, 4C). Again, 
the reduced expression of SlKLUH led to enhanced expression 
of lipid metabolism-related genes. The enriched GO terms of 
the down-regulated genes in 7 DPA pericarp of RNAi-2Q1 in-
cluded terms related to cellular processes, such as ‘Microtubule-
based process’, ‘Cell cycle process’, and ‘Microtubule 
cytoskeleton organization’. Genes involved in these processes 
included putative orthologs of the Arabidopsis ATAURORA1 
(AUR1) (Solyc08g066050), ARABIDOPSIS NPK1-
ACTIVATING KINESIN 1 (ATNACK1) (Solyc03g119220), 
MICROTUBULE-ASSOCIATED PROTEIN 65-3 (MAP65-
3) (Solyc03g007130), and TETRASPORE (Solyc07g042560). 
In addition, down-regulated DEGs in the RNAi-2Q1 
developing seeds were primarily associated with processes re-
lated to transport and homeostasis, whereas up-regulated DEGs 
in the seeds were not enriched for any biological processes (Fig. 
4C). Collectively, the GO enrichment analyses of DEGs from 
both expression studies suggested that decreased expression of 
SlKLUH in fw3.2(wt) and the RNAi-2Q1 results in smaller 
sizes of fruit and seed possibly by increasing lipid metabolism.

Characterization of DEGs involved in lipid metabolism 
pathways

The DEGs were mapped onto pathways using the ACYL-
LIPID METABOLISM database (http://aralip.plantbiology.
msu.edu/pathways/pathways). We detected 23 and 101 lipid 
metabolism-related DEGs in the fw3.2(ys)–fw3.2(wt) dataset 
and in the fw3.2(ys)–RNAi-2Q1 dataset (Supplementary Table 
S3), respectively. ‘Cutin synthesis and transport’ and ‘Fatty acid 
elongation and wax biosynthesis’ were the two most abundant 
lipid metabolism pathways shared by the fw3.2(ys)–fw3.2(wt) 
and the fw3.2(ys)–RNAi-2Q1 datasets (Supplementary Fig. 
S6). We found 16 DEGs (seven DEGs were shared between the 
two datasets) and 31 DEGs (six DEGs were shared between 
the two datasets) involved primarily in ‘Cutin synthesis and 

Fig. 3.  Differential gene expression analyses in developing pericarp and 
seed between the fw3.2 NILs. (A) PCA plot showing the clustering of 
transcriptomes from pericarp and seed tissues at different time points in the 
fw3.2 NILs. Each data point represents a biological replicate. (B) Expression 
of SlKLUH in pericarp and seed tissues at different time points in the 
fw3.2 NILs. Asterisks denote significant differences (**P<0.01; ***P<0.001) 
as determined by Student’s t-tests. NS, non-significant difference. (C) 
DEGs at different developmental time points of pericarp and seed. (D) 
Different expression patterns (left panel) and GO enrichment (right panel) 
of up-regulated DEGs in the pericarp of fw3.2(wt). The size of the circles 
indicates the number of DEGs in the given GO term. The color coding 
indicates the gene ratio calculated as the number of DEGs in the given GO 
term divided by the total number of genes in the term. The numbers 5, 7, and 
10 indicate 5 DPA, 7 DPA, and 10 DPA, respectively. P, pericarp; S, seed.
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transport’ (Fig. 5) and ‘Fatty acid elongation and wax biosyn-
thesis’ (Fig. 6), respectively. Importantly, most of the DEGs (15 
out of 16 DEGs involved in ‘Cutin synthesis and transport’ and 
20 out of 31 DEGs involved in ‘Fatty acid elongation and wax 
biosynthesis’) were more highly expressed in fw3.2(wt) and/or 
the RNAi-2Q1 line than in fw3.2(ys). The increased expression 
of the lipid-related genes involved in the two pathways and the 
concomitant decreased fruit and seed weight in the fw3.2(wt) 
and the RNAi-2Q1 lines suggested a functional correlation 
between lipid metabolism and fruit/seed size regulation.

Differential accumulation of lipids

The gene expression data implied that changes in lipid me-
tabolism were a consequence of the differential expression of 
SlKLUH. To further investigate the effects of SlKLUH on lipid 
metabolism, we performed lipid profiling of 5 DPA fruits from 
the NILs and RNAi-2Q1. A total of 425 metabolites were de-
tected and 58 were annotated as signals derived from known 
lipids (Supplementary Fig. S7). An OPLS-DA (Wiklund et al., 
2008) was performed to identify the major difference in the 
lipid profile between the different genotypes. The OPLS-DA 
(Fig. 7A) and OPLS loading S-plot (Fig. 7B) revealed that the 
discriminative metabolites with significantly increased levels in 
fw3.2(wt) and RNAi-2Q1 were non-phosphorus glycerolipids, 
including monogalactosyldiacylglycerol (MGDG) and 
digalactosyldiacylglycerol (DGDG), and phospholipids, 
including phosphatidylcholine (PC), phosphatidylethanolamine 

(PE), phosphatidylinositol (PI), and four unknown lipids (Table 
1). Only four unknown lipids were significantly decreased in 
fw3.2(wt) and the RNAi-2Q1 line (Table 2). This result pro-
vides information about the effects of SlKLUH expression 
levels on lipid metabolites. However, details of the biosynthesis 
of the discriminative lipids and the mechanisms by which 
SlKLUH affects their accumulation remain unknown.

Identification of gene co-expression modules in 
fw3.2(ys) and fw3.2(wt) by WGCNA

To identify pathways that are consistently associated with 
SlKLUH expression, WGCNA was performed using the 
RNA-seq data from either fw3.2(ys) or fw3.2(wt). The net-
works identified from this analysis might be directly linked to 
the function of SlKLUH in regulating organ size. A  total of 
11 modules (comprised of 43–4199 genes) were identified in 
fw3.2(ys) (Fig. 8A; Supplementary Dataset S4), and 10 modules 
(comprised of 48–4845 genes) were recognized in fw3.2(wt) 
(Fig. 8B; Supplementary Dataset S5). SlKLUH was assigned to 
the yellow module (YYM) in fw3.2(ys) containing 1676 genes 
(Supplementary Dataset S4), whereas this gene was assigned 
to the green module (WGM) in fw3.2(wt) containing 1245 
genes (Supplementary Dataset S5). The eigengenes of fw3.2(ys) 
YYM (Fig. 8C) and fw3.2(wt) WGM (Fig. 8D) showed con-
sistently higher expression in seeds compared with pericarp, 
which mirrored the expression levels of SlKLUH.

Fig. 4.  Transgenic down-regulation of SlKLUH affects the transcriptome of pericarp and seed at 7 DPA. (A) PCA plot showing the clustering of 
transcriptomes from 7 DPA pericarp and seed in fw3.2(ys) and the RNAi-2G2 and RNAi-2Q1 lines that down-regulate the expression of SlKLUH. Each 
data point represents a biological replicate. (B) DEGs in 7 DPA pericarp and seed in the fw3.2(ys)–RNAi-2Q1 comparison. 7, 7 DPA; P, pericarp; S, seed; 
(C) Heatmap showing different expression patterns (left panel) and GO enrichment (right panel) of DEGs in the fw3.2(ys)–RNAi-2Q1 comparison. The gray 
boxes in the right-hand panel represent missing GO terms. Only the enriched GO terms with adjusted P-value <0.05 are shown.
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Of the 1676 genes in YYM, 421 (~25.1%) were shared with 
the co-expressed genes in WGM (Supplementary Fig. S8). This 
relatively low overlap suggested that the module-specific tran-
scriptome profile was noticeably changed as a result of higher 
SlKLUH expression. Genes with the highest kME values are 
referred to as intramodular hub genes and are thought to play 
critical roles in maintaining network structure and function 
(Barabási et  al., 2011; Langfelder et  al., 2013). We found that 
SlKLUH (kME=0.971) ranked 32nd and formed a hub gene in 
YYM (Fig. 9A; Supplementary Dataset S4). This suggested that 
SlKLUH acted to maintain the network structure and func-
tion for this module. In contrast, SlKLUH (kME=0.885) in the 
fw3.2(wt) dataset ranked 366th, and was therefore not a hub 
gene (Fig. 9B; Supplementary Dataset S5).

GO term enrichment analysis identified genes in YYM re-
lated to ‘Photosynthesis’, ‘Response to stimulus’, and ‘mRNA 
metabolic process’ (Fig. 10). The genes in WGM were enriched 
for ‘Plastid organization’ and ‘Cellular metabolic/catabolic/

biosynthetic process’ (Fig. 10). Even though no common en-
riched GO terms were identified, many enriched GO term 
categories relate to photosynthesis, chloroplast organiza-
tion, and chlorophyll biosynthesis. These results suggested a 
common theme of SlKLUH-co-expressed genes in fw3.2(ys) 
and fw3.2(wt) that impact chloroplast functioning such as in 
carbon fixation which might possibly be directly related to 
organ growth. In addition, no GO terms were enriched in the 
shared set of 421 genes.

Differentially and co-expressed transcription factors 
are implicated in tomato fruit and seed weight control 
mediated by SlKLUH

Gene expression dynamics of those involved in lipid metab-
olism and photosynthesis-related processes are regulated dir-
ectly by TFs. In the DEG analyses, nine TFs were shared in 

Fig. 5.  SlKLUH expression is associated with genes involved in ‘Cutin synthesis and transport’ pathway. Schematic overview of the ‘Cutin synthesis and 
transport’ pathway was modified from the ARABIDOPSIS ACYL-LIPID METABOLISM database (http://aralip.plantbiology.msu.edu/pathways/pathways). 
For additional details on genes involved in this pathway, see http://aralip.plantbiology.msu.edu/pathways/cutin_synthesis_transport and http://aralip.
plantbiology.msu.edu/pathways/cutin_synthesis_transport_2. The filled upright and inverted triangles indicate up- and down-regulated DEGs in the 
RNAi-2Q1 line compared with fw3.2(ys), respectively. The open upright triangle indicates up-regulated DEGs in fw3.2(wt) compared with fw3.2(ys); red 
gene ID indicates the DEGs shared between the two DEG datasets.
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the fw3.2(ys)–fw3.2(wt) and fw3.2(ys)–RNAi-2Q1 datasets 
(Supplementary Table S4), suggesting that these TFs might 
play important roles in regulating fruit and seed weight in 
the KLUH pathway. For example, Solyc04g074990 (ZF-HD), 

Solyc08g079800 (GRF), and Solyc04g077510 (GRF) were 
down-regulated in 7 DPA pericarp in both fw3.2(wt) and the 
RNAi-2Q1 line (Supplementary Figs S5, S9; Supplementary 
Datasets S1, S3; Supplementary Table S4). GRFs are known as 

Fig. 6.  SlKLUH impacts genes involved in ‘Fatty acid elongation and wax biosynthesis’ pathway. Schematic overview of the ‘Fatty acid elongation and wax 
biosynthesis’ pathway was modified from the ARABIDOPSIS ACYL-LIPID METABOLISM database (http://aralip.plantbiology.msu.edu/pathways/pathways). 
For additional details on genes involved in this pathway, see http://aralip.plantbiology.msu.edu/pathways/fatty_acid_elongation_wax_biosynthesis. The filled 
upright and inverted triangles indicate up- and down-regulated DEGs in the RNAi-2Q1 line compared with fw3.2(ys), respectively. The open upright triangle 
indicates up-regulated DEGs in fw3.2(wt) compared with fw3.2(ys); red gene ID indicates the DEGs shared between the two DEG datasets.

Fig. 7.  OPLS-DA of lipidome data of 5 DPA fruit from fw3.2(ys), fw3.2(wt), and RNAi-2Q1. (A) Score plot (R2X[1]=0.167933, R2X[2]=0.379057). The 
samples from fw3.2(ys), fw3.2(wt), and RNAi-2Q1 are clearly separated. Each dot represents an individual sample. (B) S-plot of OPLS-DA based on 
ANOVA of the cross-validated residuals (CV-ANOVA). Each point represents a lipid molecule. The variables that did not significantly vary are plotted 
in the middle. The lipids that changed most contributed to the class separation and are plotted at the top or bottom of the S-shaped plot in red. The 
discriminative metabolites whose levels found in fw3.2(wt) and RNAi-2Q1 were higher than those from fw3.2(ys) are shown in the upper right region of 
the S-plot, while the discriminative metabolites whose levels from fw3.2(wt) and RNAi-2Q1 were lower than those of fw3.2(ys) are shown in the lower left 
region. Details of discriminative metabolites in the upper right and lower left are shown in Tables 1 and 2.
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positive regulators of primary cell proliferation and play im-
portant roles in regulating organ size in plants (Horiguchi et al., 
2005; Vercruyssen et al., 2015; Li et al., 2016; Shimano et al., 2018; 
Zhang et al., 2018). Solyc04g074990 encodes a ZF-HD TF that 
is closely related to Arabidopsis HB22, HB25, and HB33. In 
Arabidopsis, overexpression of ATHB25 results in wider siliques 
and larger seeds, while simultaneous knockdown of ATHB25, 
ATHB22, and ATHB31 leads to smaller seeds (Bueso et  al., 
2014). Therefore, the down-regulation of Solyc04g074990, 
Solyc08g079800, and Solyc04g077510 was associated with 
smaller fruit and seed in fw3.2(wt) and RNAi-2Q1, suggesting 
that they may function as positive regulators of tomato fruit 
and seed size. However, further study is required to dissect their 
exact roles in fruit and seed weight regulation mediated by 
KLUH in tomato.

The DEGs in the TF category are considered to change ex-
pression as an indirect consequence of the expression level of 
SlKLUH. However, these DEGs may or may not be found in 
the same module as SlKLUH. TF genes that are found in the 
same module as SlKLUH may be more directly involved in 
the entire KLUH network. To obtain further insight into the 
transcriptional regulation of the KLUH pathway, we sought 
out the TFs in these two modules. The YYM harbored 117 
TFs (6.98%) which were classified into 35 families. The 10 

most abundant TF families in YYM were bHLH (13), C2H2 
(11), MYB (9), MYB-related (6), B3 (6), Trihelix (5), bZIP 
(5), ERF (5), AP2 (4), and NAC (4) (Supplementary Fig. 
S10A; Supplementary Table S4). The WGM contained 76 TFs 
(6.10%) mainly from families classified as bHLH (12), C2H2 
(6), HD-ZIP (4), GRAS (4), MYB (3), MYB-related (3), NAC 
(3), Trihelix (3), bZIP (3), and Dof (3) (Supplementary Fig. 
S10B; Supplementary Table S4). Thirty-seven TFs were shared 
by YYM and WGM (Supplementary Table S4). The orthologs 
of some of common TFs were known from other studies to 
participate in organ size regulation in plants. For example, 
VAL1 (AT2G30470) (Solyc06g082520), a member of the 
B3 domain TFs and a negative regulator of oil production, 
plays a major role in plant embryo development (Tsukagoshi 
et al., 2005, 2007; Suzuki et al., 2007; Schneider et al., 2016). 
The putative ortholog of Arabidopsis SUPERMAN (SUP; 
AT3G23130), Solyc09g089590, encodes a zinc-finger pro-
tein that in Arabidopsis has been proposed to control cell pro-
liferation by regulating the transcription of genes that affect 
cell division, thus regulating organ size (Hiratsu et  al., 2002; 
Nibau et  al., 2010). Interestingly, three of the 37 TF geness 
(Solyc02g089540, Solyc06g060830, and Solyc11g072470) 
were also identified as DEGs in the fw3.2(ys)–RNAi-2Q1 
dataset (Supplementary Table S4). The putative tomato HB2 
(Solyc06g060830) was up-regulated in pericarp of RNAi-2Q1. 
In Arabidopsis, overexpression of AtHB2 (AT4G16780) sig-
nificantly affects the α-linolenic acid and total fatty acid con-
tents as well as plant growth and seed dry weight (Vigeolas 
et  al., 2011; Nehlin, 2015; Ivarson et  al., 2017). One of the 
LATERAL ORGAN BOUNDARIES DOMAIN (LBD) 
family of TF genes, Solyc11g072470, was also up-regulated in 
the pericarp of RNAi-2Q1. Populus LBD1 is involved in the 
regulation of secondary growth in Populus and an activation-
tagged mutant of PtaLBD1 showed increased stem diameter 
and smaller leaves (Yordanov et al., 2010).

Table 2.  Discriminative metabolites predicted by OPLS-DA with 
decreased levels in fw3.2(wt) and RNAi-2Q1

Retention 
time (min)

m/z Annotation Averaged intensity (mean ±SD)

fw3.2(ys) fw3.2(wt) RNAi-2Q1

4.17 786.528 Unknown 0.58±0.028 0.56±0.10 0.45±0.07
4.57 814.559 Unknown 1.1±0.094 1.0±0.12 0.9±0.11
0.27 1068.510 Unknown 5.4±0.80 5.5±1.0 5.1±0.58
0.31 1126.515 Unknown 0.74±0.26 0.79±0.33 1.2±0.25

Table 1.  Discriminative metabolites predicted by OPLS-DA with increased levels in fw3.2(wt) and RNAi-2Q1

Retention time (min) m/z Annotation Averaged intensity (mean ±SD)

fw3.2(ys) fw3.2(wt) RNAi-2Q1

4.49 716.522 PE_34:1 ([M-H]–) 0.40±0.092 0.48±0.068 0.57±0.067
4.31 740.522 PE_36:3 ([M-H]–) 0.75±0.13 1.1±0.14 1.25±0.29
4.39 745.556 Unknown 0.60±0.059 0.72±0.060 0.71±0.11
4.40 744.553 Unknown 1.3±0.11 1.6±0.078 1.6±0.26
4.20 768.553 Unknown 0.82±0.12 1.1±0.10 1.3±0.29
4.40 804.575 PC_34:1 ([M+HCOO]–) 4.8±0.50 5.6±0.21 5.7±0.92
3.82 819.526 MGDG_36:6 ([M+HCOO]–) 21±1.7 24±2.2 26±1.5
4.20 828.575 PC_36:3 ([M+HCOO]–) 3.4±0.33 4.3±0.42 5.3±0.99
3.99 835.533 PI_34:1 ([M-H]–) 1.3±0.16 1.6±0.099 1.5±0.22
4.81 832.606 PC_36:1 ([M+HCOO]–) 0.85±0.14 0.93±0.021 0.93±0.20
3.56 935.574 Unknown 13±0.71 14±0.86 14±0.56
3.56 981.579 DGDG_36:6 ([M+HCOO]–) 9.7±0.49 10±0.69 10±0.37

DGDG, digalactosyldiacylglycerol; MGDG, monogalactosyldiacylglycerol; SQDG, sulfoquinovosyldiacylglycerol; PC, phosphatidylcholine; PE, 
phosphatidylethanolamine; PI, phosphatidylinositol.
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Other TF genes previously described as organ size regulators 
were co-expressed with SlKLUH in either YYM or WGM. 
For example, four AP2 TF genes were identified in YYM but 
not in WGM (Supplementary Figs S10, S11; Supplementary 
Table S4). Of these, three AP2 TF genes (Solyc02g064960, 
Solyc10g084340, and Solyc04g049800) were clustered with 
the APETALA-like subfamily (Supplementary Fig. S11). 
AT4G36920, a member of the APETALA-like subfamily, 
plays an important role in determining seed size and oil con-
tents without substantial changes in seed fatty acid compos-
ition (Jofuku et al., 2005; Ohto et al., 2009; Yan et al., 2012). 
In rice, SUPERNUMERARY BRACT (OsSNB) was identi-
fied as a negative regulator of seed weight (Jiang et al., 2019). 
In tomato, AP2a (Solyc03g044300) was identified as a major 
negative regulator of fruit ripening via regulation of ethylene 
biosynthesis and signaling (Chung et al., 2010; Karlova et al., 
2011). The RNAi lines of SlAP2a showed smaller fruit size 
than the wild type (Chung et al., 2010). Another AP2 TF gene, 
Solyc02g030210, is one of the orthologs of WRINKLED1 
(WRI1) (Supplementary Fig. S11). The positive roles of 
AtWRI1 and its orthologs in regulating lipid metabolism and 
seed mass have been extensively demonstrated (Baud et  al., 

2009; Shen et al., 2010; Qu et al., 2012; Ma et al., 2013; Wu 
et al., 2014; Ivarson et al., 2017). In addition, putative auxin re-
sponse factor (ARF) genes (Solyc07g043620, Solyc07g043610, 
and Solyc07g016180) and WUSCHEL-related homeobox 
(WOX) (Solyc02g077390) were identified as co-expressed 
genes of SlKLUH in WGM only (Supplementary Table S4). 
Many ARFs regulate gene expression in response to auxin, 
and have been identified as important regulators of organ size, 
including ARF2 in Arabidopsis (Schruff et al., 2006), ARF1 
in rice (Aya et al., 2014), ARF18 in rapeseed (Liu et al., 2015), 
ARF2 in sea buckthorn (Ding et al., 2018), and ARF19 in the 
woody plant Jatropha curcas (Y. Sun et al., 2017). In addition, 
several ARFs in cucumber were identified which putatively 
regulate carpel number variation through interaction with 
the orthologs of CLV3 and WUS (Che et al., 2020). WOXs 
are also well known to be associated with organ size. For 
example, overexpression of STENOFOLIA (STF), a WOX 
family TF gene, significantly increases plant size, including 
leaf width and stem thickness, through enhancing cell prolif-
eration (Wang et al., 2017). These data suggest that TFs may 
play a key role in fruit and seed weight regulation in the 
KLUH pathway in tomato.

Fig. 8.  Co-expression analyses with SlKLUH in developing pericarp and seed in the fw3.2 NILs. (A) Hierarchical cluster tree of genes showing 
co-expression modules based on WGCNA in fw3.2(ys). (B) Hierarchical cluster tree of genes showing co-expression modules based on WGCNA in 
fw3.2(wt). Each ‘leaf’ in the tree represents one individual gene. The branches correspond to modules labeled with different colors. The color rows below 
the dendrograms indicate module membership in fw3.2(ys) (A) and in fw3.2(wt) (B). (C) Heatmap of gene expression (upper panel) and expression levels 
of the corresponding eigengene across the samples (lower panel) in the fw3.2(ys) NIL. The heatmap (upper panel) and barplot of eigengene expression 
(lower panel) have the same samples (x-axis). Rows of the heatmap correspond to genes, columns to samples. Red and green in the color key denote 
overexpression and underexpression, respectively. (D) Similar to (C) but instead for fw3.2(wt).
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Fig. 10.  Significantly enriched GO terms of the YYM (left panel) and WGM (right panel). The size of the circles indicates the number of co-expressed 
genes in the given GO term. The color coding indicates the gene ratio calculated as the number of co-expressed genes in the given GO term divided by 
the total number of genes in the term. The x-axis indicates the FDR-adjusted P-value.

Fig. 9.  Network depiction of the SlKLUH-containing modules with hub genes. (A) YYM network in fw3.2(ys); (B) WGM network in fw3.2(wt). Fifty hub 
genes with the edge weight higher than 0.25 (A) and 0.2 (B), respectively, are visualized by Cytoscape. The pink circles represent TFs. Red lines show the 
edges of SlKLUH to its neighbor genes. Nodes represent genes, and node size is correlated with connectivity of the gene.
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Overexpression of SlSHN1 significantly decreases fruit 
and seed weight

In tomato, certain lipid metabolism-related genes have been ex-
perimentally characterized for their involvement in fruit cutin 
biosynthesis and fatty acid elongation. To evaluate if genes that 
impact these two pathways also play roles in fruit and seed 
weight, we identified the sources of transgenic or natural mutant 
lines that differ in their lipid metabolism. One example is WAX 
INDUCER1/SHINE1 (WIN/SHN1) which encodes a tran-
scription factor that regulates the ‘Cutin synthesis and transport’ 
and ‘Fatty acid elongation and wax biosynthesis’ pathways in 
Arabidopsis (Aharoni et al., 2004; Broun et al., 2004; Kannangara 
et al., 2007; Li-Beisson et al., 2010, 2013). In tomato, SHINE1 
(SlSHN1; Solyc03g116610) and SlSHN2 (Solyc12g009490) 
are putative orthologs of Arabidopsis WIN/SHN1. SlSHN2 
showed significantly higher expression in the pericarp of 
fw3.2(wt) (Supplementary Dataset S2) and the RNAi-2Q1 line 
(Supplementary Dataset S3) compared with fw3.2(ys). On the 
other hand, SlSHN1 showed low or undetectable expression 
in our datasets (0–0.1 RPKM). Overexpression of SlSHN1 
increases cuticular wax accumulation, resulting in improved 
drought tolerance in tomato (Al-Abdallat et al., 2014). To as-
sess whether overexpression of SlSHN1 affects fruit and seed 
weight, we evaluated these traits in the previously described 
SlSHN1-overexpressing lines (Al-Abdallat et al., 2014). The re-
sults showed that high and ubiquitous expression of SlSHN1 
significantly decreased fruit weight by reducing the number 
of cell layers and pericarp thickness compared with the non-
transgenic control (Fig. 11). Seed weight was also reduced in 
the overexpression lines (Fig. 11). The results imply that fruit 
and seed weight may be directly affected by changes in lipid 
metabolism by the paralog of SlSHN1, SlSHN2.

Tomato CD2 (Solyc01g091630), a HD-Zip TF gene, was 
found in the WGM, and is involved in cutin biosynthesis and 
wax deposition (Nadakuduti et al., 2012; Kimbara et al., 2013). 
We evaluated the fruit and seed weight of the cd2 mutant in the 
AC background. No significant differences in fruit and seed w 
eight were found between cd2 and the control under green-
house conditions (Supplementary Fig. S12A). In the field trial, 
fruit weight in cd2 was significantly higher than in the control, 
whereas seed weight was significantly lower than in the control 
(Supplementary Fig. S12B). The inconsistent results between the 
greenhouse and field trials as well as between the fruit and seed 
suggested that these traits were not significantly affected by CD2.

Discussion

SlKLUH appears to function in the cell proliferation 
phase at the early stages of fruit development

CYP78A is a highly conserved plant-specific subclade in the 
CYP450 family (Nelson, 2006; Mizutani and Ohta, 2010). 
Members of CYP78A are recognized to positively regulate 

organ weight and size as well as development in plants such 
as Arabidopsis (Wang et  al., 2008; Fang et  al., 2012; Sotelo-
Silveira et  al., 2013; Yang et  al., 2013), rice (Nagasawa et  al., 
2013; Yang et al., 2013; Maeda et al., 2019), wheat (Ma et al., 
2015a, b), maize (X. Sun et  al., 2017), soybean (Wang et  al., 
2015a; Zhao et  al., 2016), J.  curcas (Tian et  al., 2016), sweet 
cherry (Qi et al., 2017), tomato, and pepper (Chakrabarti et al., 
2013). Different CYP78As regulate organ size differently. For 
example, Arabidopsis KLUH/CYP78A5 appears to affect cell 
proliferation at the early stages of integument growth, there-
fore regulating the seed size (Anastasiou et al., 2007; Adamski 
et al., 2009). In contrast, EOD3/CYP78A6 and CYP78A9 are 
primarily involved in the regulation of cell expansion phases 
during the later stages of integument development (Fang et al., 
2012). Moreover, the rice and maize PLASTOCHRON1 
(PLA1) genes stimulate leaf growth by prolonging the dur-
ation of cell division (Miyoshi et al., 2004; Mimura and Itoh, 
2014; X. Sun et al., 2017). In this study, we found that SlKLUH 
affects pericarp cell proliferation in the early stages of fruit 
development (5–7 DPA). The phylogenetic analysis supported 
the notion that SlKLUH controls cell proliferation as it is the 
closest ortholog to AtCYP78A10 and AtCYP78A5 (Fig. 1).

The link between organ weight and lipid metabolism in 
plants

Arabidopsis KLUH is proposed to produce an unknown 
signaling molecule that non-cell-autonomously regulates 
cell proliferation in different organs (Anastasiou et  al., 2007; 
Adamski et  al., 2009; Eriksson et  al., 2010). It has been hy-
pothesized that the unknown signaling molecule might be 
fatty acid-derived molecules (Anastasiou et al., 2007; Eriksson 
et al., 2010; X. Sun et al., 2017) based on the following evi-
dence: (i) Arabidopsis CYP78A5, CYP78A7, and CYP78A10, 
and maize PLA1 hydroxylate short-chain fatty acids, including 
lauric acid (C12:0), myristic acid (C14:0), myristoleic acid 
(C14:1), and palmitic acid (C16:0) (Imaishi et  al., 2000; Kai 
et al., 2009). Similarly, activation of rice CYP78A13 decreases 
nicotinic acid, shikimic acid, and quinic acid contents and in-
creases the contents of glyceric acid and palmitic acid (Xu 
et  al., 2015). These results suggest that OsCYP78A13 might 
control organ growth via modification of short-chain fatty 
acid-derived molecules. Furthermore, OsCYP78A13 res-
cued the klu-4 mutant, implying that the signals produced 
by the CYP78A subfamily proteins are identical in rice and 
Arabidopsis (Yang et al., 2013; Xu et al., 2015). However, the 
application of exogenous 12-hydroxylated lauric acid did not 
rescue the major phenotype of the cyp78a5/a7 double mu-
tant (Kai et al., 2009), suggesting that the substrates catalyzed 
by CYP78A subfamily proteins remain elusive in plants. (ii) 
Cytochrome P450s catalyze various types of oxygenation re-
actions using fatty acids as substrates (Pinot and Beisson, 2011). 
Eight cytochrome P450 genes involved in fatty acid modi-
fication are transcriptionally regulated by KLUH/CYP78A5 
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activity in Arabidopsis (Anastasiou et  al., 2007). (iii) Many 
studies revealed a mechanistic link between lipid metabolism 
and seed size. For example, overexpression of miRNA167A re-
sults in lower α-linolenic acid content and larger seed size via 
decreased transcription of fatty acid desaturase3 (CsFAD3) in 
Camelina sativa (Na et al., 2019). Similarly, GmFAD3-silenced 
plants contain reduced levels of linolenic acid (18:3) and pro-
duce significantly larger seeds in soybean (Singh et al., 2011). 
Down-regulation of BnDof5.6 in canola reduces both embryo 
size and fatty acids content (Deng et al., 2015). Moreover, re-
duced expression of HECT E3 ligase in canola results in larger 
seeds with increased lipid content (Miller et al., 2019). Other 
studies have also supported a link between lipid metabolism 
and seed weight (Chen et al., 2012; Liu et al., 2016; Lunn et al., 
2018; Meru et al., 2018; Guo et al., 2019). For example, the mu-
tation of Arabidopsis TRANSPARENT TESTA2 (TT2) sig-
nificantly increased the seed fatty acid content and decreased 
seed weight (Chen et al., 2012). Overexpression of rice ACYL-
CoA-BINDING PROTEIN 2 (OsACBP 2) confers an increase 
in grain size and seed oil content (Guo et al., 2019). Similarly, 
the increased seed oil is also concomitant with an increase 
in seed weight in transgenic lines overexpressing Arabidopsis 
Seipin1 (AtSEI1) (Lunn et al., 2018).

In the present study, the fw3.2 NILs and the RNAi-2Q1 that 
down-regulate the expression of SlKLUH offer opportunities 

to reveal the molecular mechanisms controlling fruit and seed 
weight by this CYP78A member. DEGs between the two ex-
pression datasets, the NILs and the fw3.2(ys)–RNAi-2Q1, were 
enriched for genes that were part of several lipid metabolism 
pathways (Figs 3D, 4C; Supplementary Fig. S6). These results 
provide an indication of a possible link between SlKLUH-
mediated fruit and seed weight regulation and lipid metabolism 
in tomato such that decreased expression of SlKLUH results in 
increased expression of many lipid metabolism-related genes. 
In addition, the transgenic lines overexpressing SlSHN1 that 
show a significant decrease in fruit and seed weight also in-
dicate a correlation between fruit and seed weight and lipid 
metabolism.

In our study, we found that fruit and seed weight were signifi-
cantly different between cd2 and the control under field con-
ditions and in opposite directions (Supplementary Fig. S12B). 
Furthermore, the lack of consistency between field and green-
house and the differing response suggest that CD2 has no dra-
matic effect on fruit and seed weight in tomato (Supplementary 
Fig. S12). Moreover, altered expression of other lipid 
metabolism-related genes such as GDSL1 (Solyc11g006250) 
and GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 6 
(SlGPAT6, Solyc09g014350) have no demonstrable effect on 
fruit weight (Girard et al., 2012; Petit et al., 2016). These results 
indicate the complicated relationship between lipid metabolism 

Fig. 11.  Overexpression of SlSHN1 results in decreased fruit and seed weight. (A) Medio-lateral section of mature fruits of cultivar Moneymaker and 
SlSHN1 overexpression lines in the Moneymaker background. Scale bar=1 cm. (B) Hand cut section of pericarp from representative mature green fruit 
stained with toluidine blue. Scale bar=2 mm. (C) Representative seeds from Moneymaker and the SlSHN1 overexpression lines. Scale bar=2 mm. (D) 
Quantitative analysis of fruit weight, pericarp thickness, cell layer number, and seed weight. For pericarp cell layer analysis, the endoderm layer and the 
small cells below the exoderm were not counted since in many cases they are not clearly visible which could skew the results. The letters in the boxplots 
indicate significant differences among different genotypes evaluated by Duncan’s test (α<0.05).
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and fruit and seed weight. Furthermore, co-expression ana-
lyses also did not show a tight link between SlKLUH and lipid 
metabolism. In fact, only 37 (~2.2%) and 44 (~3.5%) lipid 
metabolism-related genes were identified in YYM and WGM 
(Supplementary Table S5), respectively. Therefore, it is possible 
that lipid metabolism is associated with but not directly regu-
lated by SlKLUH, and that this pathway instead is associated 
with photosynthesis-related processes. However, little is known 
about the relationships among KLUH, photosynthesis-related 
processes, and lipid metabolism, which need to be further 
studied.

DEG and co-expression network analyses provide 
a valuable resource of candidate genes putatively 
involved in organ weight regulation in tomato and other 
plants

The molecular mechanisms underpinning KLUH-mediated 
fruit and seed weight are poorly understood in tomato. The dif-
ferential expression and co-expression analyses led to the iden-
tification of a number of candidate genes putatively involved 
in organ weight regulation mediated by SlKLUH in tomato.

In addition to the nine TFs which are common DEGs in both 
the fw3.2(ys)–fw3.2(wt) and the fw3.2(ys)–RNAi-2Q1 datasets 
(Supplementary Table S4), many DEGs encoding enzymes or 
transporters in ‘Cutin synthesis and transport’ and ‘Fatty acid 
elongation and wax biosynthesis’ pathways were also identified 
(Figs 5, 6). Moreover, some of them are putatively involved in 
both plant development and lipid metabolism based on pre-
vious studies, including HOTHEAD (HTH; AT1G72970) 
(Solyc06g062600), DEFECTIVE IN CUTICULAR RIDGES 
(DCR; AT5G23940) (Solyc03g025320), ATP-BINDING 
CASSETTE G11 (ABCG11; AT1G17840) (Solyc01g105450), 
and lipid transfer protein (LTP) genes. HTH, catalyzing the 
biosynthesis of long-chain α-,ω-dicarboxylic fatty acids, is re-
quired for the prevention of organ fusions in floral organs in 
Arabidopsis and rice (Krolikowski et al., 2003; Kurdyukov et al., 
2006; Akiba et al., 2013; Xu et al., 2017). DCR is involved in 
cutin and triacylglycerol biosynthesis (Panikashvili et al., 2009; 
Rani et al., 2010). The dcr mutants had wider and longer seeds 
than the wild type (Rani et al., 2010). ABCG11 is involved in 
sterol/lipid homeostasis and vascular development in addition 
to plant growth (Panikashvili et al., 2010, 2011; Le Hir et al., 
2013; Yadav et al., 2014). Seven out of eight LTP genes were 
down-regulated in RNAi-2Q1 compared with fw3.2(ys) (Fig. 
6). LTPs are known to affect cuticle biosynthesis and transport, 
as well as seed development (Kim et al., 2012; Wang et al., 2015b; 
Deng et al., 2016; Kouidri et al., 2018). Notably, tomato CUTIN 
SYNTHASE1 (SlCUS1; Solyc11g006250), an important gene 
involved in the ‘Cutin synthesis and transport’ pathway, was 
up-regulated in 7 DPA pericarp of fw3.2(wt) and RNAi-2Q1 
(Fig. 5). It encodes GDSL-motif esterase/acyltransferase/lipase 
protein and has been shown to be associated with both lipid 

metabolism and epidermal cell development (Segado et  al., 
2020).

In Arabidopsis, nine cytochrome P450 genes were transcrip-
tionally affected by mutations in CYP78A5/KLUH (Anastasiou 
et  al., 2007) of which eight were linked to fatty acid modi-
fications. In our datasets, only CYP76C4 (Solyc02g090350, 
AT2G45550) was identified as a down-regulated DEG in 7 
DPA pericarp and seeds in RNAi-2Q1 (Supplementary Dataset 
S3), but not in the NILs, suggesting a role for CYP76C4 in 
the KLUH pathway in both tomato and Arabidopsis. Further 
studies are required to confirm the biological and biochem-
ical functions of CYP76C4 and its relationship to KLUH in 
Arabidopsis and tomato.

Co-expression network analyses identified common and 
unique gene sets between YYM and WGM including many 
TFs putatively associated with fruit and seed weight in tomato 
(Supplementary Table S4). Co-expressed genes of interest 
that are not TF genes in YYM and WGM were also found. 
For example, the RING-type E3 ubiquitin ligase EOD1 
(AT3G63530) (Solyc11g062260) was identified as a negative 
regulator of organ size (Disch et al., 2006; Li et al., 2008; Li and 
Li, 2015; Vanhaeren et al., 2017). The eod1 mutants had larger 
organs and increased biomass, while overexpression of EOD1 
resulted in reduced organ growth (Disch et al., 2006; Xia et al., 
2013). Arabidopsis DWF4 (AT3G50660) (Solyc02g093540) 
encodes a C-22 hydroxylase that catalyzes a rate-determining 
step in brassinosteroid biosynthesis. Overexpression of DWF4 
significantly increased seed number and weight, thus increasing 
seed yield in Arabidopsis (Choe et  al., 2001), Brassica napus 
(Sahni et al., 2016), and rice (Wu et al., 2008).

Together, we propose many DEGs and co-expressed genes 
that are putatively involved in the fruit and seed weight regula-
tion mediated by SlKLUH. This knowledge is helpful to eluci-
date the whole picture of the KLUH pathway regulating organ 
size in tomato and other crops. However, the exact functions of 
these candidate genes remain to be studied in tomato.

Conclusion

Our results reinforce the notion that lipid metabolism is in-
volved in SlKLUH-mediated regulation of fruit and seed 
weight through a possible mechanism as proposed in Fig. 12. 
The differential expression of SlKLUH between the NILs re-
sults in different co-expression networks that are associated 
with fruit and seed development, possibly through modulating 
photosynthesis-related processes. The TFs identified in YYM 
and WGM are putative upstream regulators of SlKLUH. In 
the small-fruited NIL fw3.2(wt) and RNAi-2Q1, lower ex-
pression of SlKLUH is associated with increased expression 
of many genes involved in lipid metabolism, especially for 
genes involved in ‘Cutin synthesis and transport’ and ‘Fatty 
acid elongation and wax biosynthesis’. Thus, the contents of 
certain non-phosphorus glycerolipids and phospholipids were 
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increased while the contents of the four unknown lipids were 
decreased. Importantly, a number of lipid-related genes and TFs 
putatively involved in the regulation of fruit and seed weight 
in tomato were also identified, providing potential targets for 
further dissecting the molecular mechanisms underlying fruit 
and seed weight in tomato and other crops.
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Fig. 12.  Proposed model of SlKLUH-mediated regulation of fruit and seed weight in tomato. The differential expression of SlKLUH results in altered 
expression of many lipid-related genes, photosynthesis-related processes, and lipid profiles that can determine genotype-specific fruit and seed size. The 
font size of ‘KLUH’ and ‘Lipid-related genes’ corresponds to the expression levels. The font size of ‘Non-phosphorus glycerolipids and phospholipids’ 
and ‘Four unknown lipids’ indicates the contents of the lipids.
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