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SUMMARY

Humans heavily rely on dozens of domesticated
plant species that have been further improved
through intensive breeding. To evaluate how
breeding changed the tomato fruit metabolome, we
have generated and analyzed a dataset encompass-
ing genomes, transcriptomes, and metabolomes
from hundreds of tomato genotypes. The combined
results illustrate how breeding globally altered fruit
metabolite content. Selection for alleles of genes
associated with larger fruits altered metabolite pro-
files as a consequence of linkage with nearby genes.
Selection of fivemajor loci reduced the accumulation
of anti-nutritional steroidal glycoalkaloids in ripened
fruits, rendering the fruit more edible. Breeding for
pink tomatoes modified the content of over 100 me-
tabolites. The introgression of resistance genes from
wild relatives in cultivars also resulted in major and
unexpected metabolic changes. The study reveals
a multi-omics view of the metabolic breeding history
of tomato, as well as provides insights into metabo-
lome-assisted breeding and plant biology.

INTRODUCTION

Metabolomics is defined, by analogy to transcriptomics and

proteomics, as the analysis of the metabolic complement of an

organism (Wishart et al., 2007). While metabolome coverage is

not as comprehensive (Fernie et al., 2004), advances in high-

throughput metabolic profiling have rendered metabolomics

an important tool for both fundamental and applied research
(Saito and Matsuda, 2010). The plant kingdom is exceptionally

rich in metabolic diversity, harboring in excess of 200,000 struc-

turally distinct metabolites (Wurtzel and Kutchan, 2016). These

metabolites not only play important roles in plant growth, devel-

opment, and adaptation to environmental changes but also are

important sources of human food, medicine, and energy (Butelli

et al., 2008; Chen et al., 2016). Over the past decade, the integra-

tion ofmetabolic profilingwith other omics tools has proven to be

highly effective for functional gene identification and pathway

elucidation in plant primary and secondary metabolism (Kusano

et al., 2011; Matsuda et al., 2010).

Tomato is the highest value fruit and vegetable crop world-

wide and makes a substantial nutritional contribution to the

human diet. Tomato fruit quality at harvest is an integrative

embodiment of multiple metabolites. Large datasets document

the dynamic changes of both tomato fruit metabolites and the

structural and regulatory genes that control their abundance

throughout development and ripening (Carrari et al., 2006).

During fruit development there are large changes in the levels

of primary metabolites, including carbohydrates and acids,

while at the onset of ripening flavonoids and carotenoids

begin to accumulate (Muir et al., 2001), and the content of

the bitter glycoalkaloid, a-tomatine, markedly decreases (Iijima

et al., 2009).

The combination of metabolomics, linkage mapping studies,

and metabolome-based genome-wide association studies

(mGWAS) has provided considerable insight into the extent of

natural variation in metabolism and its genetic and biochemical

control in tomato. GWAS have been recently conducted to

map the genetic loci for important metabolic traits (Sauvage

et al., 2014; Tieman et al., 2017). Metabolic profiling combined

with transcriptome analysis also has been used to dissect sec-

ondary metabolic pathways such as steroidal glycoalkaloid

(SGA), phenylpropanoid, and flavonoid biosynthesis, revealing
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Figure 1. Generation and Integration of

Multi-omics Data

(A) Layout of the study.

(B) Genomic distribution of mGWAS and eQTL. The

eQTL include cis-eQTL and trans-eQTL. Metabo-

lites are grouped into eight categories and marked

with different colors and tags (d–k).

(C) Network built on correlation among metabolites,

genes, and SNPs. Metabolites are shown as large

dots colored like in Figure 1B. Genes are shown as

reverse arrows with a distinct color per co-expres-

sion module. The significant SNPs for mGWAS or

eQTL are shown as small red dots. The SlMYB12

and Solyc10 g085230 genes are denoted.

An interactive version is at http://218.17.88.

51:8080/network/index.html.

See also Figures S1 and S2, Tables S1, S2, and S3,

and Data S1.
important regulatory roles of novel gene clusters as well as of the

GAME9 transcription factor (Alseekh et al., 2015; Cárdenas et al.,

2016; Itkin et al., 2013). Combining metabolomic and genomic

data has allowed a comprehensive refinement of SGA biosyn-

thesis (Schwahn et al., 2014), which is predominantly abundant

in Solanaceous species. Such studies provide insight into the

processes underlying the evolution of metabolism. It is important

to note, however, that despite the great in-roads made in the

targeted studies described above, global insights into metabolic

regulation remain rare.

Tomato (Solanum lycopersicum var. cerasiforme and

S. lycopersicum) was domesticated from its wild ancestor,

selected for adaptive traits to the environment in which they

were grown, and, lately, differentiated into different types.

Modern breeding specifically focuses on developing varieties

that incorporate multiple disease-resistant loci that are

introgressed from wild relatives. In a previous study, we recon-
250 Cell 172, 249–261, January 11, 2018
structed the history of tomato breeding,

including domestication, improvement,

divergence, and introgression (Lin et al.,

2014). The metabolic changes that

have accompanied these human-guided

evolutionary processes are essentially

unknown. Here, we generated a large da-

taset spanning the genome, transcrip-

tome, and metabolome on a population

of between 399 and 610 diverse tomato

accessions (Figure 1A). Integration of

the resultant data identified 3,526

mGWAS signals, 2,566 cis-eQTL (expres-

sion quantitative trait locus), 93,587

trans-eQTL, and 232,934 expression-

metabolite correlations. The clues gained

from these multi-omics datasets were

subsequently experimentally tested by

linkage mapping, molecular biology,

biochemical assays, genetic complemen-

tation, and CRISPR-Cas9 knockout.

This study provides major insights into
how breeding changed the tomato metabolome, a knowledge

base for fruit quality improvement, and a rich resource for plant

metabolic biology.

RESULTS

Generation and Characterization of a Multi-omics
Dataset
We collected a total of 610 tomato accessions (Table S1),

including 42 accessions of wild species and 568 accessions

from the red-fruited clade (S. pimpinellifolium, S. lycopersicum

var. cerasiforme and S. lycopersicum), representing various

geographical origins, consumption type, and improvement

status. Resequencing of these accessions generated a total

of 6.6 trillion nucleotides, with a median depth of 6.63 and

coverage of 97.2% of the assembled genome (SL2.50)

(Consortium, 2012). We generated a final set of 26,273,368

http://218.17.88.51:8080/network/index.html
http://218.17.88.51:8080/network/index.html


SNPs and identified 500,919 nonsynonymous SNPs in 33,088

genes. This variation map adds 14.7 million SNPs on the basis

of our previous one (11,620,517 SNPs of 360 accessions)

(Lin et al., 2014).

To understand the natural variation of the metabolome in the

red-fruited tomato population, we selected 442 accessions for

metabolite quantification. These accessions represent a cross-

section of the set selected based on their passport information,

morphological traits, and phylogenetic relationships (Figure S1A).

We quantified fruit metabolites using a broadly targeted liquid

chromatography-tandem mass spectrometry (LC-MS/MS)-

based metabolic profiling method. A total of 980 distinct analytes

were identified in pericarp tissue of ripe fruits (Data S1), including

362 annotated metabolites. A principal component analysis

(PCA) of all metabolite data revealed that the three subgroups

largely formed independent clusters, consistent with the evolu-

tionary relationship of the red-fruited tomato clade built by

genetic makers (Figure S1B).

Two independent estimates of broad-sense heritability (H2)

revealed that 65.9% (656 of 980) of the metabolites displayed

values greater than 0.5 (Figure S1C; Table S2). We additionally

observed that 96.1% (942 of 980) of the coefficients of variation

(CVs) were greater than 0.5, and the distribution of the CVs in the

three subgroups was similar to that of the entire dataset (Fig-

ure S1D). However, we found that the phenotypic variation of

the PIM group was substantially lower than S lycopersicum

var. cerasiforme group (CER) (p < 0.0045) and S. lycopersicum

group (BIG) (p < 0.0039), displaying mean CVs of 1.13, 1.22,

and 1.24, respectively (Figure S1E), a result inconsistent with

the level of genetic diversity in the sub-populations.

The transcriptomes of orange stage (about 75% ripe) fruit

pericarp of 399 accessions were next analyzed in order to

explore the relationship between gene expression and metab-

olites. Expression of a total of 30,326 genes was detected in

the RNA sequencing (RNA-seq) dataset, accounting for

88.4% of the annotated genes. On average, 20,226 genes

were detected in all of the samples (Figure S1F), whereas a

total of 18,675 shared genes could be detected in 80% of

the samples (Figure S1G). We found a total of 5,563 genes

with a significant difference between the subgroups

(p < 2.2 3 10�6, multiple test), including 2,964 PIM-CER,

3,655 CER-BIG, and 4,427 PIM-BIG differentially expressed

genes. We applied a weighted correlation network analysis

to find modules of highly correlated genes and identified 31

such modules (Figures S1H and S1I; Data S1). To find the

potential biological and molecular connections, we imported

modules into the Kyoto Encyclopedia of Genes and Genomes

(KEGG) database. While multiple metabolic pathways co-ex-

isted within single modules, we were able to identify some

clear patterns (Data S1). For example, metabolism of multiple

amino acids was enriched in module 2; phenylalanine biosyn-

thesis was enriched in module 19.

Correlations between the Variome, Transcriptome, and
Metabolome
To uncover genetic control of the fruit metabolic traits, we

selected 2,678,533 common SNPs (minor allele frequency

[MAF] > 0.05 and missing ratio < 10%) in a 442 member
population to perform mGWAS. A Bonferroni correction of

p = 9.05 3 10�8 was employed as the genome-wide threshold

for all trait associations, and a total of 3,526 signals for 514

metabolites was detected including 1,291 and 2,235 signals

corresponding to 163 annotated and 351 unknown metabo-

lites, respectively (Figure S2A; Data S1). The identified signals

showed a significantly uneven distribution (c2 = 2,206.6,

p < 4.9 3 10�4) deviating from a random distribution across

the genome and we found 102 potential hotspots (signals num-

ber > 9, permutation test, p < 0.01), predominantly located on

chromosome 1 (chr 1) (Figure S2B). Somemetabolites detected

here were associated with previously identified flavor volatiles

in mGWAS (Tieman et al., 2017). For example, 18 metabolites

and 2 volatiles, 6-methyl-5-hepten-2-one and geranylacetone,

were mapped to the same signal (ch03:4024959), which could

contribute to the study of flavor-related pathways. In summary,

we identified a large set of genetic loci controlling tomato fruit

metabolites and the results will facilitate both functional

verification of genes and elucidation of the metabolic networks

facilitating tomato quality improvement.

Many genetic variants could influence phenotype by means of

modulating gene expression. Therefore, to bridge the gap be-

tween the variome and transcriptome, we next tested correla-

tions between genomic polymorphism and gene expression.

To reduce false positives, the hidden confounding factors (Fig-

ure S2C) of expression variation and population co-variates

were taken into account (Stegle et al., 2012). A total of

2,588,483 common SNPs (MAF > 0.05 and missing < 10%)

and 22,480 genes (missing < 80%) was selected for further

analyses. We detected a total of 434,809 SNPs significantly

(p < 8.63 10�13, multiple test) associatedwith 3,465 genes using

the linear module. eQTL were further subdivided into cis-eQTL

and trans-eQTL according their distance (Michaelson et al.,

2009). To reduce the repeatability of eQTL for certain genes,

the leading SNPwithin a 30-kb interval was selected and defined

as an eQTL (Figure S2D). A total of 2,566 cis-eQTL and 93,587

trans-eQTL was identified for 2,566 and 2,461 genes, respec-

tively (Figure 1B; Data S1).

To find patterns linking the transcriptome and metabolome,

correlations were calculated between the abundance of each

metabolite and transcript. A rigorous multiple test correction,

p = 4.5 3 10�8, was used to filter the genes that significantly

correlated with each metabolite. A total of 232,934 expression-

metabolite correlations involving 820 chemicals and 9,150 genes

were identified.

Next, we integrated the above data by building a multi-omics

network. The overlap of mGWAS and eQTL results generated

13,361 triple relationships (metabolite-SNP-gene) (Figure 1C;

Table S3), which includes 371 metabolites, 970 SNPs, and 535

genes. This dataset thus facilitates both candidate gene identifi-

cation and metabolic pathway elucidation. For example, one

mGWAS signal (03:67080052) of the SGA hydroxytomatidenol

(SlFM0964) was also supported by the eQTL of Solyc03

g118100, an oxidoreductase gene that was previously reported

to play an important role in SGAs biosynthesis (Umemoto et al.,

2016). Further examples of insight derived from the data integra-

tion are provided in the examples below describing both

SGA biosynthesis and regulation by SlMYB12.
Cell 172, 249–261, January 11, 2018 251
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Metabolome Alteration Subjected to Fruit-Mass-
Targeted Selection
We previously showed that domestication (PIM-CER) and

improvement (CER-BIG) targeted two independent sets of QTL

and together made the modern tomato fruit �100 times larger

than its ancestor. Using the new variome map, we identified

168 domestication sweeps and 151 improvement sweeps

covering 7.85% and 8.19% of the assembled genome and

harboring 4,095 and 4,547 genes, respectively (Data S1). Human

selection of such large portions of the genome would be

expected to have a major influence on the chemical contents

of fruits. Between PIM (fruit weight, 2.0 g) and CER (13.3 g),

389 metabolites were significantly different, whereas 614 were

significantly different between CER and BIG (111.4 g) (p < 0.05)

(Data S1), suggesting that selections during the improvement

stage have had a larger impact on metabolite content than

during the domestication stage.

To identify the altered fruit metabolites specific to fruit-mass

targeted selection, we created two 500 member F2 populations,

one derived from a cross between a PIM and a CER accession

and a second derived from a cross between a CER and a BIG

accession (Figures S3A and S3B). QTL-seq and metabolite

analyses were performed on pooled fruit from the 10% of plants

producing the smallest and largest fruit in each F2 population.

Two regions corresponding to the defined fruit weight QTL

fw1.2 and fw3.2 were identified in the segregating population

derived from the PIM by CER cross (Figure S3C) and 343

metabolites were significantly (p < 0.05) different in the two

corresponding bulked pools. Among these metabolites, 116

overlapped with those that were different between the PIM and

CER groups (Figure S3D; Data S1). For the other bulked pools,

four genomic regions that include fw2.2, fw9.1, fw9.3, and

fw11.1-fw11.2-fw11.3, were identified as contributing to fruit

weight (Figure S3E). In this instance, a total of 375 metabolites

were significantly (p < 0.05) different based on fruit weight.

Among these metabolites, 172 overlap with those that

were different between the CER and BIG groups (Figure S3F;

Data S1). During the improvement phase, 17 primarymetabolites

(five amino acid and derivatives and three vitamins and nine

nucleotides derivatives) increased.

To recapitulate, �30% (116/389) of the metabolites differenti-

ating PIM and CER and �28.0% (172/614) of the metabolites

differentiating CER and BIG are likely associated with breeding

for larger fruit. This result indicates that fruit mass-targeted selec-

tion led to considerable changes in the chemical composition of
Figure 2. Hitchhiking of Fruit Weight Locus fw11.3 Altered Metabolites

(A) The fw11.3 locus is located within a sweep region with much lower nucleotid

(B) Manhattan plot for the metabolite of SlFM1456. Metabolite content was gene

(C) A 72.8-kb genomic region overlapped by two fw11.3 NILs. Line 150I carries

BIG fragment in the YP (yellow pear) background.

(D) NIL-1 lines differed by 15 metabolites, and the NIL-2 lines differed by 16 m

fw11.3 NILs.

(E) Fruit weight in fw11.3 NILs and transgenic complementation lines. The differe

0.05 and the 0.01 levels, respectively. W, wild-type; T, transgenic materials.

(F–M) Relative content of eight metabolites, SlFM0417 (F), SlFM0815 (G), SlFM11

(M) in fw11.3 NILs and in transgenic complementation lines.

(E–M) Data represent mean ± SEM and was analyzed by Student’s t test.

See also Data S1.
the fruit but does not account for the majority of the chemical

differences associated with domestication and improvement.

Linkage to FruitWeightGenesContributes toMetabolite
Alteration
The previously identified fruit weight genes enabled us to further

explore which metabolites are changed in fruit mass targeted

selection. To date, the three fruit weight genes fw2.2, fw3.2,

and fw11.3 have been cloned, and the corresponding larger fruit

alleles are almost entirely fixed in the BIG group (Chakrabarti

et al., 2013; Frary et al., 2000; Huang and van der Knaap,

2011). All three genes have undergone selection and are situated

in sweep regions SW53, SW75, and SW255, respectively. A total

of 53 signals for 51 metabolites were identified in the three

sweeps and 47 signals for 47 metabolites were mapped in

SW255 harboring fw11.3 (Figures 2A and 2B).

To ascertain whether these metabolites were directly affected

by the fruit weight genes, we focused on fw11.3 since many

more mGWAS signals were located within the sweep region

and we anticipated it to be responsible for the largest number

of metabolic changes. Two sets of near-isogenic lines (NILs)

harboring different alleles for fw11.3 were generated. One NIL

(150I) harbors a PIM (LA1589) introgression (from 55.17 to

55.30 Mb) in a BIG (Rio Grande) background, while the other

NIL (151I) harbors a BIG introgression from the variety Gold

Ball Livingston (from 55.23 to 55.49 Mb on chr 11) in a CER

(yellow pear) background (Figure 2C). The overlapping region

was 72.8 kb from 55,228,328 to 55,301,104, where signals for

38 metabolites were mapped. The two NILs with different alleles

displayed significantly different fruit weight compared to their

near-isogenic parents (Figure 2E). Comparing the fruit metabo-

lites in the lines and their respective near-isogenic backgrounds,

we found 15 of the 38 metabolites were significantly (p < 0.05)

different in NIL-1 and 16 in NIL-2 (Data S1). The 15 and 16metab-

olites of the twoNILs display an overlap of eight metabolites (Fig-

ure 2D), hypothesized to be driven by fw11.3 selection.

To directly test whether fw11.3 is the causative locus for the

metabolite differences, we evaluated tomato lines that carried

the derived allele of fw11.3 (Mu et al., 2017). As expected, fruit

weight was significantly altered in the transgenic plants, but

none of the eight metabolites were significantly different. The

same result was obtained when the derived allele was trans-

formed into a PIM background (Figures 2F–2M; Data S1),

indicating that fw11.3 is not directly responsible for the altered

metabolite levels. Correlation analysis between metabolite
e diversity in BIG than in either CER or PIM.

tically associated with the sweep harboring fw11.3.

a PIM fragment in the RG (Rio Grande) background, and line 151I carries a

etabolites. Eight significantly different metabolites were present in the two

nce was measured by Student’s t test. * and ** indicate significant levels at the

94 (H), SlFM1361 (I), SlFM1456 (J), SlFM1551 (K), SlFM1590 (L), and SlFM1673
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content and gene expression of the sweep regions denoted two

nearest flanking gene of fw11.3 that might be the causative

genes, as the correlation coefficients for the seven metabolites

were relatively high (r = 0.14–0.18, p < 10�4) (Data S1). Whether

that gene is indeed causative awaits further experimental

validation. However, this analysis indicates that while many

metabolites were changed during fruit mass based selection in

domestication, as fw11.3 illustrates, they are not necessarily

caused by the fruit weight gene itself; rather, linked genes within

the corresponding sweeps may be responsible.

Domestication of Steroidal Glycoalkaloids and
Underlying Biosynthetic Network
SGAs have potent resistance properties, protecting the plant

from predators, but are considered to be anti-nutritional in plants;

however, this is only true for a subset of SGAs, while some exhibit

positive nutritional properties (Friedman, 2002). In general, they

are bitter and humans have selected for fruits with reduced

SGA contents (Rick et al., 1994). Of the metabolites we anno-

tated, a total of 46 are SGAs. Through intergroup comparison,

only one SGA, SlFM0959 (p < 0.05), increased from PIM to

CER, and all the others declined from PIM to BIG, consistent

with strong negative selection for SGAs during domestication

(Figure 3A). The combination of mGWAS and genomic selection

analysis enabled us to determine how SGAs were domesticated.

mGWAS identified seven major signals (two each on chr 1 and 3,

one each on chr 4, 5, and 10) for 44 SGAs. Five out of the seven

major signals were located within domestication/improvement

sweeps (Figure 3B), including SW29, SW66, SW77, SW82, and

SW246. GAME9 is located within the sweep region of SW29 on

chr 1 (Figure 3C). We discovered a SNP (ch01:84029382) within

the CDS of GAME9 that leads to a non-synonymous mutant

(V-A) and associates with content alteration of eight SGAs. In

addition, we found the frequency of the allele for lower SGA con-

tent increased from 0% in PIM, to 26.3% in CER, and to 57.3% in

BIG (Figure S4A). These data indicate that GAME9 is highly

likely to have had an important role in SGA domestication.

The sweep SW77 on chr 3 harbors 5 candidate genes including

2 cytochrome c oxidoreductases, 1 glycosyltransferase, and

2 ethylene-responsive transcription factors. (Figure 3D; Data S1).

In the SW246 sweep on chr 10, we discovered a new

co-expression gene cluster that consists of 1 acetyltransferase,
Figure 3. Domesticated SGAs and Related Metabolic Pathway

(A) Heatmap of all SGAs detected in this study. The relative values of SGAs cont

(B) Genomic distribution of major signals for all SGAs detected. Red arrows den

(C–E) Nucleotide diversity of three groups and the major signals on chr 1 (C), chr 3

bars, respectively.

(F) Schematic map of genes identified in the duplicated genomic regions in chr 1

families are shown by white arrows. The numbers under each arrow are the last

(G) The nonsense mutant produces a stop codon and prematurely truncated pro

(H) The effect of different alleles on the content of one SGA. A truncated protein

(I) Validation of gene function in vitro.

(J) Expression pattern of clustered genes in Chr10 and previously identified GAME

Gene expressions of Heinz 1706 fruit are shown at different stages: S1, 1 cm; S2,

expression data is from the database Tomato Functional Genomics Database [T

(K) Expression of structural genes in the SGAbiosynthesis pathway from cholester

expression shift from PIM to CER and CER to BIG, respectively.

See also Figure S4 and Data S1.
1 cytochrome P450, 1 acyl-CoA dehydrogenase, and 7 UDP-

glucosyltransferase genes, all of which could potentially be

involved in SGA biosynthesis (Figures 3E and 3F). A SNP

(ch01:64501127) that introduces a premature stop codon was

found in the exon of a UDP-glycosyltransferase (Solyc10

g085230), and significant metabolic changes are associated

with this SNP (Figures 3G and 3H). These findings thus comple-

ment the identification of this gene as being causal for tomati-

dine-hexose in a S. pennellii introgression line population and

subsequent validation of its function via the virus induced

gene-silencing approach (Alseekh et al., 2015). Furthermore,

following the expression of Solyc10 g085230 in E. coli BL-21,

we could demonstrate that it converted tomatidine into tomati-

dine-galactose, providing a further confirmation of its function

(Figure 3I). Interesting, this newly uncovered gene cluster has

a markedly different expression pattern compared to the

GAME1 cluster. The GAME1 cluster is predominantly expressed

in immature fruits, whereas that reported here is predominantly

expressed during ripening (Figure 3J). The mutations described

above substantially decrease levels of SGAs beyond this stage,

indicating that they play an important role in detoxifying the ripe

fruits in readiness for consumption and hence seed dispersal.

On investigating the transcriptome data, we found most of the

cloned genes were downregulated in BIG rather than CER, a

fact that is consistent with the reduction of SGA contents during

improvement (Figure 3K).

The identified causative variants and effective SNPs exist

within the natural tomato germplasm and could readily be adop-

ted in marker-assisted breeding strategies. We examined three

major SGAs (SlFM1785, SlFM1885 and SlFM1985) and two

loci (SW29 and SW246) as examples. Selection for low SGA

alleles at both SW29 and SW246 can reduce the three SGAs to

20.9% (Figure S4B). Pyramiding of these loci with other high

value loci would, therefore, likely mitigate any deleterious or

anti-nutritional effects of using wild germplasm in breeding.

Metabolome Divergence between Pink and Red
Tomatoes
Following domestication and improvement, breeders developed

different types of tomatoes based on human preference, usage

and local climates. In general, cultivated tomatoes can be sepa-

rated into fresh market and processing types. Within the fresh
ent were scaled to the BIG group for each chemical.

ote signals located within sweeps regions.

(D), and chr 10 (E). The sweeps and genes are denoted by pink shading and red

0. Specific gene families are indicated by colored arrows, and the other gene

four digits of the gene ID.

tein.

resulted in significantly reduced content of SlFM1885 compared to wild-type.

genes. The FPKMof each gene was scaled to the maximum value of all stages.

2 cm; S3, 3 cm; S4, mature green; S5, break; S6, break +10 days. (Heinz 1706

FGD].)

ol to dehydrolycoperoside. The green and the purple arrows represent the gene
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market type, pink tomatoes are preferred by some consumers

and have become especially popular in Asian countries. Genetic

and biochemical evidence has demonstrated that SlMYB12, a

transcription factor that is a key regulator of the flavonoid

biosynthesis pathway, is responsible for the red phenotype

(Adato et al., 2009; Ballester et al., 2010). Our previous studies

demonstrated that deletion of a cis-acting element in the tran-

scriptional promoter and several nonsense mutations within the

coding sequence together inactivate gene function resulting in a

colorless peel, due to the absence of flavonoids (Lin et al., 2014).

To uncover the full range of metabolites associated with the

phenotype, we compared all pericarp metabolites in 44 pink

BIG lines and 191 red BIG lines, identifying 122 metabolites

that were significantly different (p < 10�3, multiple test correc-

tion) (Figure 4A; Data S1). Mining the 13,361 triple relationships,

we found that the signature SNP of SlMYB12 (SNPy) was associ-

ated with 56 metabolites via mGWAS and 69 genes via eQTL

(Figure 4B). All 56metabolites are includedwithin the 122metab-

olites identified by pink-red comparison.

Next, we investigated which genes are directly or indirectly

regulated by SlMYB12 and are therefore responsible for the

observed metabolic profile of the pink tomato. Two CRISPR/

Cas9 constructs with different single-guide RNAs (sgRNAs)

were created and transformed into the red cultivar Moneymaker.

Four independent homozygous transformed lines with different

mutations were obtained (Figure 4C). In these plants, the pink

fruit phenotype indicates that knockout of SlMYB12 was

achieved (Figure 4D). Since SlMYB12 is predominantly ex-

pressed in peel at the turning stage, we also isolated peel tissue

and quantified the transcripts of orange stage fruits. Within the

peel tissue, we found 869 significant alterations in gene expres-

sion (p < 0.01, at least 2-fold change in expression) including 658

up- and 211 downregulated genes in common to all mutant lines.

As expected, most (49 out of 69), of the genes that were subject

to regulation by SlMYB12 using eQTL analysis are included

within the 869 genes. Interestingly, 18 of the 44 genes that

were reported to be directly regulated by AtMYB12 in ChIP

(chromatin immunoprecipitation assay) experiments (Zhang

et al., 2015) were eQTL of SlMYB12 (Figure 4E; Data S1),

supporting the notion that they are direct downstream targets

of SlMYB12. Integration of these data provides new insights

into the regulation network of SlMYB12.

Relative to the wild-type fruit, 152 metabolites were altered in

the peel of all four knockout mutants (p < 0.05; Table S4). The

decrease in content of the major flavonoids is consistent with

the transparent peel of pink tomatoes. Some other chemicals,

including 16 glycoalkaloids, 12 polyamines, 5 polyphenols, and

11 primary metabolites were also changed (Figure 4F), indicating

that SlMYB12 directly or indirectly influences more than just

flavonoid metabolism. Among the 12 changed polyamines, our

mGWAS analysis of SlFM0516 and SlFM0756 identified two

polyamine biosynthesis genes, N-acetyltransferase (Solyc05

g041860) and caffeoyl-CoA O-methyltransferase (Solyc04

g063210), that were key enzymes of polyamines biosynthesis

pathway (Grienenberger et al., 2009; Penget al.,2016). In addition,

their expression was also significantly altered in the knockout

mutants (Figure 4G). A causal relationship between SlMYB12

and the content of these other metabolites awaits further experi-
256 Cell 172, 249–261, January 11, 2018
mentation. All the above data pinpoint SlMYB12 as a major hub

gene of tomato fruit metabolism and an excellent example of

how selection for one trait can have a major impact on seemingly

unrelated traits that can potentially impact fruit quality.

Influence of Wild Introgressions on Fruit Metabolome
In recent decades, wild relatives of tomato have been used to

introduce alleles into elite cultivars, particularly those relating

to biotic stress resistance, including, among others, Tm-2a

(tomato mosaic virus resistance gene) from S. peruvianum and

Ty-1/Ty-3 from S. chilense (Verlaan et al., 2013). Many of these

resistance genes are derived from inedible green-fruited species

and linkage drag might be expected to negatively impact fruit

quality especially in wide crosses. In a previous study (Lin

et al., 2014), we delimited the regions of introgressed fragments

involving some of these genes. However, how exotic introgres-

sions change the fruit metabolome has not yet been determined.

Here, we used the S. peruvianum-derived Tm-2a as a case study.

We identified 11 accessions within the BIG group harboring the

exotic introgressiononchr9withasharedgenomic fragment from

7.45 to 62.70Mb. To identify whichmetabolites were changed by

theTm-2a introgression inbig-fruitedcultivars, a segregatingpop-

ulation derived from a cross between a Tm-2a-harboring inbred

line and a susceptible line was analyzed. After genotypic confir-

mation of the progeny, those individuals displaying homozygous

resistant (R) and susceptible (S) genotypes were pooled (about

30 lines each). We found that 346 metabolites were significantly

(p < 0.05) altered between the S and R pools. By comparing the

metabolite profiles of the PIM accessions (n = 31) and the BIG

accessions without the Tm-2a introgression (n = 276), we identi-

fied 589 metabolites that were significantly changed during the

domestication process (p < 0.05). Among these metabolites, we

identified 52 metabolites that were increased in the R pool and

were decreased from PIM to BIG, as well as 75 metabolites that

were decreased in the R pool and were increased from PIM to

BIG. The fate of these 127 metabolites is, therefore, reversed by

the resistance breeding using wild introgression (Data S1).

DISCUSSION

In the broadest sense, the metabolome is what we eat from a

tomato fruit that determines the nutritional and consumption

value of this important crop. Metabolomics analyses have

been applied toArabidopsis and some crops to reveal the natural

variations in chemical composition (Luo, 2015). However, the

changes in metabolism during the domestication process have

been rarely studied. To our knowledge, this question has been

only addressed at the metabolome level in a single study, but

the genetic variations underlying the metabolite changes were

not explored (Beleggia et al., 2016). In the current study, we

provide the first multi-omics data to understand the impact of

human intervention on chemical composition of crop.

A Multi-omics Dataset for Plant Metabolic Biology
Themulti-omics data generated in this study provides a valuable

resource for further studies on biosynthetic pathways and regu-

latory circuits of plant metabolites. Owing to the limitations of

single-data-type approaches, combining multiple datasets can
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Figure 4. Metabolites and Pathway Affected by SlMYB12

(A) Heatmap of 122 significant differentially accumulating metabolites in the red and the pink populations. Red (n = 191) and pink (n = 40) accessions could be

distinctly separated into two clusters.

(B) Triple relationships centered on SNPy. A total of 56 metabolites and 69 genes were identified by mGWAS and eQTL analyses.

(C) Generation of SlMYB12 mutations by CRISPR/Cas9 using two independent single-guide RNAs (sgRNA1 and sgRNA2). Sequences of SlMYB12 mutant

M1-M4 are shown. sgRNA targets and a protospacer-adjacent motif (PAM) are indicated in red and in green, respectively. Deletions and insertions are indicated

by dashes and in blue, respectively.

(D) Fruit color of wild-type and SlMYB12 mutant.

(E) Cross-validation between three independent datasets. a, 869 genes with at least 2-fold differential expression between SlMYB12mutant and wild-type in peel

tissue. b, a total of 44 genes that were reported to be directly regulated by AtMYB12 in ChIP. c, a total of 69 genes potentially subject to regulation by SlMYB12

using eQTL.

(F) Altered metabolites in fruit peel of SlMYB12 mutants. 152 annotated chemicals were significantly changed in all four mutant lines, including 16 steroidal

glycoalkaloids, 18 flavonoids, 12 polyamines, 5 polyphenols, and 11 primary metabolites.

(G) Two changed polyamines and corresponding differentially expressed genes in the peel ofmutant lines. Themetabolite contents and gene expression values of

mutant lines were scaled to the wild-type values. Data represent mean ± SEM and was analyzed by Student’s t test.

See also Tables S3 and S4 and Data S1.
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compensate for missing or unreliable information in any single

data type (Ritchie et al., 2015). Multi-dimensional analysis and

multi-staged analysis have been increasingly used to provide

clues for understanding biological mechanisms (Holzinger and

Ritchie, 2012). Here, we have applied multi-dimensional analysis

of genomes, transcriptomes, and metabolomes to provide leads

for discovery of candidate genes contributing to metabolic path-

ways, including those of flavonoids and SGAmetabolism. These

examples provide clear highlights how the study of extensive

natural genetic variance will greatly aid attempts to improve

the coverage of metabolomics.

These relationships resulted from this multi-omics analyses will

greatly facilitate large-scale interactive gene-metabolites annota-

tion and pathway elucidation. The associations between 278

known metabolites and 7,478 genes will enrich the annotation of

genes by metabolic functions. These data could also be used to

annotate unknown chemicals. For example, both SlFM1290 and

SlFM1379 were associated with a diacylglycerol kinase (Solyc12

g005380), which participates in the fatty acid biochemical

process. Among them, SlFM1290 was annotated as lyso phos-

phatidylcholines (1-acyl 18:2), but SlFM1379 was an unknown

chemical. By comparing their retention time and fragmentation

patterns,we tentatively annotatedSlFM1379asa fatty acid, phos-

phatidylcholines (O-18:1(9Z)/2:0). Further investigations shall lead

to the annotation of more unknown metabolites.

The Metabolome Is Shaped by Direct and Indirect
Selection
Genetically, the PIM group is ancestral to and more diverse than

the CER and BIG groups. However, we found that the metabolic

diversity of the CER and BIG groups was higher than that of PIM,

inconsistent with the corresponding genetic diversity. Many

more metabolites were changed during the improvement stage

than in the domestication stage, possibly the consequence of

stronger selection (measured by genetic diversity ratio) or larger

phenotypic variation (van der Knaap and Tanksley, 2003). One

explanation could be that constraints on the phenotype in the

wild population might to be released or ‘‘hidden’’ gene effects

manifested in an agricultural context (Kalisz and Kramer, 2008).

Alternatively, phenotypic diversification might be caused by

targeted selection. For example, the distinct traits selected for

processing tomatoes are very different from those of round

shaped fresh market tomatoes (Tanksley, 2004).

The impact of tomato breeding on the fruit metabolome can be

summarized in two contexts. The first is associated with direct

selection, as with domestication of bitter chemicals such as the

SGAs. Without direct knowledge of SGAs, humans instinctively

selected for less bitter fruit, progressively selecting plants with

tastier fruits and consequently, reducing the levels of the more

bitter SGAs. A similar story has emerged in cucumber when

ancient native collectors selected non-bitter lines that carried a

lowly expressed allele of the fruit bitterness gene Bt (Shang

et al., 2014). The second context for selection is indirect and

includes the hitchhiking of metabolic genes with fruit weight

genes as ever larger fruits were selected as well as the linkage

drag associated with R genes that have been introgressed from

wild relatives. During fruit-mass targeted selection, hundreds of

metabolites (measured by dry weight) were changed. Among
258 Cell 172, 249–261, January 11, 2018
the changed metabolites, the increased primary metabolite

content between BIG (big-pool) and PIM (small-pool) might be

the consequence of a larger metabolic sink in domesticated

fruits. Evidence provided here following the generation of two

sets of NILs strongly suggests that many, if not most of these

metabolic changes may not be caused by the fruit weight genes

themselves but rather, as the results with fw11.3 indicate, be the

consequence of linked genes. The same phenomenon was also

observed in maize and rice (Olsen et al., 2006; Palaisa et al.,

2004), albeit for different phenotypic traits. These results point

to the possibility that significant changes affecting flavor and

nutritional alterations linked to selection for larger fruit may be

able to be corrected with precision molecular breeding.

Metabolome-Assisted Breeding in Tomato
Modern tomato breeding has focused considerable effort on

yield, shelf life, and resistance to disease, while flavor has

been relatively neglected. The contributions of sugars, acids,

and volatiles to flavor have been well characterized, while the

contribution of other metabolites detected by LC/MS to tomato

flavor have not been as extensively evaluated. In Asian countries,

there is a public perception that pink-fruited tomatoes are tastier.

It is generally recognized that the difference between red and

pink fruits was due to the lack of the yellow-hued naringenin

chalcone in the peel of pink fruit (Adato et al., 2009; Ballester

et al., 2010). Previously, using consumer taste panels and

targeted metabolomics (Tieman et al., 2017), we identified

34 metabolites that are significantly correlated with consumer

preference (p < 0.05). Here, using a widely targeted approach,

we identified a large number of metabolites with significant dif-

ferences between red and pink varieties, many of which are

present in the pericarp tissue. It is reasonable to assume that

at least some of these chemicals also influence taste prefer-

ences. The molecular markers linked with these genomic varia-

tions may thus be useful for metabolome-assisted breeding.

Throughout the history of plant breeding, phenotype-targeted

selection has been the foundation ofmodern agriculture. Modern

molecular tools offer the opportunity to improve crops with great

precision. High throughput molecular breeding combined with

precision genome editing has huge potential to accelerate crop

improvement (Soyk et al., 2017; Townsend et al., 2009), and

reduce or eliminate linkage drag. The work presented here

illustrates examples in which linked genes, not the target

introgressed gene, clearly have major effects on the fruit metab-

olome. This phenomenon of undesired alterations as a conse-

quence of movement of desirable alleles, particularly from wild

relatives of tomato, at the least illustrates the need to incorporate

the latest genome information into molecular breeding strategies

but also should focus attention on the advantages of genome

editing to precisely alter specific traits.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant material and growth conditions
A total of 610 tomato accessions were collected from TGRC (Tomato Genetics Resource Center), USDA (United State Department of

Agriculture), University of Florida, EU-SOL (The European Union-Solanaceae project), INRA (The National Institute for Agricultural

Research) and IVF-CAAS (The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science). These accessions

include 42 wild tomato accessions (four S. pennellii, nine S. habrochaites, three S. chilense, one S. corneliomuelleri,

seven S. peruvianum, three S. huaylasense, three S. neorickii, three S. arcanum, two S. chmielewskii, five S. cheesmaniae and

two S. galapagense), 56 S. pimpinellifolium, 142 Sl. var cerasiforme, and 370 S. lycopersicum accessions (Table S1). Tomato plants

were grown in greenhouses of AGIS-CAAS (Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences).

For metabolite profiling, 442 accessions were selected to represent a corss-section of the tomato germplasm sets, consisting of PIM

(31 accessions of S. pimpinellifolium), CER (124 accessions of S. lycopersicum var. cerasiforme) and BIG (287 big-fruited varieties of

S. lycopersicum). Independent biological samples of each accession were grown in two different locations. For each accession, eight

plants were grown. At ripening, five plants with representative phenotype were randomly selected. At least one fruit from each plant

was pooled together into one sample. Two independent biological samples were metabolically profiled.
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METHOD DETAILS

Samples preparation
Each fruit sample contained five or more fruits. Genomic DNA was extracted from young leaves using the CTAB method. The fruit

pericarp at orange stage was detached and froze using liquid nitrogen for RNA extraction. Fruit pericarp tissue at the fully ripe stage

were harvested and freeze-dried for metabolites profiling. The lyophilized tissues were ground using a mixer mill (MM400, Retsch)

with a zirconia bead for 1.5 min at 30 Hz. 100 mg powder was weighed and extracted overnight at 4�C with 1.0 mL 70% aqueous

methanol and pure methanol for water and lipid-solubility metabolites, respectively. Following centrifugation at 10,000 g for

10 min, all the supernatants were pooled and filtered with a membrane (SCAA-104, 0.22 mm pore size; ANPEL, Shanghai, China,

http://www.anpel.com.cn/) before LC-MS analysis.

Metabolite profiling
A liquid chromatography-electrospray ionization-tandem mass spectrometry system was used for the relative quantification of

widely targetedmetabolites in dried tomato fruit samples. TheMS2 spectral tag (MS2T) library including theMS andMS/MS spectra

was established by the untargeted method based on the total scan ESI (ESI–QqTOF–MS/MS) and multiple ion monitoring-

enhanced product ions (MIM-EPI)-based targetmetabolic methods. Full time-of-flight (TOF) scans were acquired in themass range

of m/z 50–1500 using an AB SCIEX TripleTOF 5600 system. A modified MIM–EPI strategy, called stepwise scan MIM–EPI, was

adopted on a triple quadrupole-linear ion trap mass spectrometer (Q TRAP), API 4000 Q TRAP LC/MS/MS System, in which Q1

(Q3) was set from 50.1 to 1000.0 Da in positive scan mode, and the mass step was 1.0 Da, such as from 50/50, 51/51, 52/52, to

1500/1500. Subsequently, the mass signals with MS2 spectral obtained by these two methods using the MRM mode to filter the

peak type and remove the redundant signals. Quantification of metabolites was carried out using a scheduled multiple reaction

monitoring method. To produce maximal signal, collision energy (CE) and de-clustering potential (DP) were optimized for each

precursor–product ion (Q1–Q3) transition (Chen et al., 2013). We made a mixture of 200 randomly chosen extracts from the asso-

ciation panel that contains all the 980metabolic features as the reference control. All of the data were normalized by those reference

control that could reflect the change of every metabolite feature, and then log2 transformed for further normalization. A data matrix

containing the 980 relative intensities of metabolites from 884 runs (442 accessions 3 two sample sets) was produced for the

tomato population (Data S1). The Metabolite (m-trait) data of the association panel are the mean of the two biological

sample sets for the LC-MS/MS as shown below: Pm,i = 1/2(Pm,i,1+Pm,i,2), where Pm,i represents the m-trait data for metabolite

m (m = 1, 2, 3, ..., 980 in tomato) in accession i (i = 1, 2, 3, ..., 442), and Pm,i,1 and Pm,i,2 are the normalized metabolite levels

determined in the two biological sample sets, respectively.

SNP identification and annotation
The 610 accessions used in this study were characterized by whole genome re-sequencing. The raw data had been previously

genotyped and deposited in the NCBI Sequenced Archive (SRA) under accession SRP045767, PRJNA353161 and the European

Nucleotide Archive under accession PRJEB5235. DNA was isolated from young leaves and sequencing libraries with insert sizes

of approximately 500 bp were constructed following manufacturer’s instructions (Illumina). The samples were sequenced on an Illu-

mina HiSeq 2000 platform with paired-end 100-bp and 125-bp reads. We used SOAP2 (Li et al., 2009c) to map all the sequencing

reads from each accession to the tomato reference genome with the following parameters: -m 100, -x 888, -s 35, -l 32, -v 3. Mapped

reads were filtered to remove PCR duplicates. Both paired-end and single-end mapped reads were then used for SNP calling

throughout the entire collection of tomato accessions using SOAPsnp with the following parameters: -L 100 -u -F 1 (Li et al.,

2009b). We generated the genotype likelihood across the population for each SNP with quality > = 40 and base quality > = 40.

The identified SNPs were further categorized as variations in intergenic regions, UTRs, coding sequences and introns according

to the tomato genome annotation (release ITAG2.4). SNPs in coding sequences were further classified into synonymous SNPs

(not causing amino acid changes) and nonsynonymous SNPs (causing amino acid changes) using Python scripts.

Phylogenetic analysis and population structure
A subset of 18,286 SNPs at four-fold degenerate sites (MAF > 5% and missing data < 10%) were filtered to build a neighbor-joining

tree for 448 accession using PHYLIP (version 3.695) with 100 bootstrap replicates (Retief, 2000). These accessions include four

wild, one S. galapagense, one S. cheesmaniae and 442 red-fruited accessions. Four green-fruited wild accessions (including one

S. habrochaites and three S. peruvianum) were used as an outgroup. The principal component analyses were performed by

the log-scaled chemical content for 442 population to demonstrate the structure of the tomato population, and the software

SIMCA-P (https://umetrics.com/) with default settings was used to cluster all the metabolites.

Read mapping and Expression profiling
Total RNA of fruit pericarp tissues at orange stage was extracted by a Trizol method (Rio et al., 2010). The transcriptome libraries of

were sequenced using 150-bp paired-end Illumina sequencing with libraries of 350-bp insert sizes. After filtering out reads with low

sequencing quality, an average of 33.87 million reads were obtained and 22.68 million reads were uniquely mapped to the tomato

reference genome for each sample. Those reads were used to calculate genome-wide gene expression patterns. To quantify
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gene expression, reads were mapped to the genome by hisat 2 (Kim et al., 2015). The reads that uniquely mapped to the reference

were conserved. Some of the reads in the remaining paired reads containing repetitive sequences or error of the sequencing

instrument were removed. In total, 97.56% of the clean reads were mapped to the genome. On average, 30.48 million reads for

each sample were uniquely mapped to the tomato reference genome, and these reads were used to calculate the whole genome

expression pattern. About 80% of the reads for each sample mapped to the exons, which is expression profiling efficient for calcu-

lating RPKM per transcript. RNA-SeQC was used to calculate the RPKM for each gene among samples (DeLuca et al., 2012).

Co-expression modules identification and KEGG enrichment for transcriptome
We applied Weighted Correlation Network Analysis (WGCNA) to gene modules with distinct expression patterns. A total of 18,675

genes (80% samples shared) were used in module constructions. Construction of a weighted co-expression network needs the

soft-thresholding powers b, which were calculated by the pick Soft Threshold function of the R Package (Langfelder and Horvath,

2008). We chose the power 10, which is the lowest power for which the scale-free topology fit index curve flattens out reaching a

high value (above 0.9) (Figure S1H). A total of 13,752 genes were assigned to 31 modules. We evaluated each module in the Kyoto

Encyclopedia of Genes andGenomes (KEGG) database for enrichment (Kanehisa andGoto, 2000).We first obtained the correspond-

ing KO number for all the genes and conducted pathway enrichment analysis. All the pathways with significant threshold (p < 0.05)

were presented in Data S1.

Genome-wide association analysis and linkage disequilibrium
A total of 2,678,533 SNPs (MAF > 5% and Missing rate < 10%) for 442 accessions were used to perform the genome-wide associ-

ation analysis. Factored Spectrally Transformed Linear module (software FaST-LMM) was used to conduct all associations (Lippert

et al., 2011). The matrix of pairwise genetic distances was used as the variance-covariance matrix for random effect and the first ten

principal components produced by GCTA were included as fixed effects. The genome-wide significance thresholds of all the traits

were set with a uniform threshold (p = 1/n, n is the effective number of independent SNPs). The effective number of independent SNPs

was calculated using Genetic type 1 Error Calculator (GEC) software (Li et al., 2012). The unified threshold (p = 9.053 10�8) was used

to filter the SNPs for all the metabolites. LD (Linkage disequilibrium) analyses were performed based on all the SNPs (MAF > 0.05)

using Haploview software (Barrett et al., 2005). The parameters were as follows: -n -pedfile -info -log -minMAF 0.05 -hwcutoff

0 -dprime -memory 2096 -maxdistance 2 Mb. LD decay was calculated based on the R2 value and corresponding distance between

two SNPs. The average R2 values for all pairwise SNPs within 200 bp distance were calculated and plotted against the average

distance. To reduce the redundancy of mGWAS signals, the lead SNP within one Mb window for each metabolite was extracted

as one signal.

Detection of mGWAS signals hotspots
A permutation test was used to assess the statistical significance of the deviation of the observed signal distribution from uniform

distribution. In permutation, all the signals were randomly assigned to the genomic regions for each 1 Mb interval, and the number

of signal for each interval were recorded. After 10,000-permutation test, the value of significant (p < 0.01) number per Mbwould be 10

for 3,526 signals.

Normal quantile transformation of expression and eQTL analysis
One of the assumptions of detecting eQTL through linear mixed model is that the expression values follow a normal distribution in

each genotype class, which is violated by outliers or non-normality in gene expression estimated from the sequencing reads.

For each gene, the expression was normalized by QQ-normal of R package. Finally, a dataset including 22,480 genes (missing

rate < 80% and a median expression level > 0) were obtained to conduct downstream analyses. To find hidden batch effects and

other confounders in the expression data, we employed the Probabilistic Estimation of Expression Residuals (PEER) method to

detect factors (Stegle et al., 2012). We included 20 PEER factors that maximized our sensitivity in the eQTL discovery process,

capturing �56.3% of the total variance in gene expression (Figure S2C). The linear regression mode of Matrix eQTL Package was

used to detect associations for SNP-gene pairs (Shabalin 2012). We corrected for the following covariates: the first five genotyping

principal components (PC’s), the first 20 expression PEER factors and quantile normalized expression matrices for population. To

deal with the false positive of association between 558,650 SNPs and genes expression, Multiple hypothesis adjustment produced

a rigorous threshold (p < 8.63 10�13) by controlling genome-wide error at level a 0.05 using Bonferroni method. The eQTL could be

subdivided into cis-eQTL and trans-eQTL. The intergenic distance of pairwise neighboring genes for the whole genome was

calculated and we found a sharp drop of distance at 30 kb with 85.4% pairwise genes (Figure S2D). If the SNPs resides within

the corresponding genes or less than 30 kb from the transcriptional start site or the end of a gene, it was classified as cis-acting,

otherwise as trans-acting.

Network building for metabolome, transcriptome and variome
The mGWAS signals were used to connect the metabolites and genetic loci, and eQTL was used to link the genetic loci and genes.

A total of 3,526 significant signals for 514metabolites were detected. Within 3,526mGWAS signals, we identified 1,626 SNPs (eQTL)

for 535 genes, and the shared loci between mGWAS and QTL as linker for metabolites and genes. The network involved a total of
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13,661 triple connections (metabolite-locus-genes) including 371 metabolites, 970 loci and 535 genes. All the associations among

mGWAS (metabolite-loci), shared eQTL (shared loci-gene) and corresponding genemodules (among transcriptomes) were shown by

Cytoscape software.

Detection of domestication and improvement sweeps
To identify genomic regions affected by domestication and improvement, two key stages in tomato evolution, we first measured the

level of genetic diversity (p) using a 100 kb window with a step size of 10 kb in PIM, CER and BIG. By scanning the ratios of genetic

diversity between PIM and CER (PIM/CER) as well as between CER and BIG (CER/BIG), we selected windows with the top 5% of

ratios (2.98 and 7.81 for domestication and improvement, respectively) as candidate regions for further analysis. The regions defined

by domestication or improvement sweeps were regarded as sweep regions (SW), and windows that were 200 kb apart were merged

into a single selected region. These sweep regions should have undergone selection during domestication or improvement stage.

Bulked segregant analysis of the F2 population by whole-genome resequencing
We planted 500 F2 progeny derived from the cross between TS-19 (a PIM line, 1.7g) and TS-450 (a CER line, 13.6g). For each

individual, the average weight of ten representative fruits was recorded. We ranked plants by average mass of their individual fruit.

Plants producing fruit that were in the top or bottom 10% in weight were pooled together. The two pools were referred as large and

small. Bulk DNA samples for large-pools and small-pools were constructed by mixing equal amounts of DNA from selected lines,

respectively. Roughly 50 x genome coverage short reads data for each bulk was aligned against the reference genome using the

Burrows-Wheeler Aligner (BWA) (Li and Durbin, 2009). SNPs between the two parental genomes were identified using SAMtools soft-

ware (Li et al., 2009a). The SNP index was calculated for both bulk samples expressing the proportion of reads harboring SNPs that

were identical to those in the big-fruit parent. ADSNP indexwas obtained by subtracting the SNP index for the small-fruit bulk sample

from that of the big-fruit bulk sample (Takagi et al., 2013). An average SNP index for big-fruit and small-fruit bulk samples was calcu-

lated using a 1,000-kb sliding window with a step size of 10 kb. For each position, a 95% confidence intervals of DSNP index under

the null hypothesis of no QTL were calculated to filter out the significant genomic region. The segregated genomic regions controlling

fruit weight derived from the cross between TS-450 and TS-400 (a BIG line, 260.1g) were detected using the same pipeline.

Glycosyltransferase assay
The full length CDS of Solyc10 g085230 was amplified with KOD-Plus-Neo high fidelity DNA polymerase using primers (Forward:

TACTTCCAATCCAATGCGATGAAAATAGAAAGAAAACAGAGTG, and Reverse: TTATCCACTTCCAATGCGCTAAGACTCTATGAT

ACACTTGCTTGC) and the following program: 95�C for 3 min, 40 cycles of 95�C for 30 s, 60�C for 30 s and 68�C for 30 s. The ampli-

fied sequence was inserted into the expression vector pMAL-C2-GST by a ligation-independent cloning method as previously

described (Eschenfeldt et al., 2009). In brief, the vector was digested with SspI and treated with T4 DNA polymerase and dGTP to

create overhang. The amplified CDS was treated with T4 PNK and then with T4 DNA polymerase and dCTP to create overhang.

The overhung CDS and vector were annealed at room temperature and then transformed into transformation-competent E. coli cells.

Recombinant proteins were expressed in BL21 (DE3) cells (Novagen) following induction by addition of 0.1 mM isopropy-

b-D-thiogalactoside (IPTG) and grown continually for 16 h at 20�C. Cells were harvested and pellets were resuspended in lysis

buffer (50 mM Tris-HCl, pH 8.0, 400 mM NaCl). The cells were disrupted by high pressure and cell debris was removed by centri-

fugation (14000 g, 1 h). Glutathione Sepharose 4B agarose (GE Healthcare) was added to the supernatant containing the target

proteins. After incubation for 1 h, the mixture was transferred to a disposable column and washed extensively with lysis buffer

(5 column volumes). Target proteins were confirmed by SDS-PAGE and purified recombinant proteins were selected for enzyme

assays and kinetic determination.

The in vitro glucosyltransferase assay for was performed at 37�C in a total volume of 100 mL containing 200 mM tomatidine sub-

strate, 1.5 mM UDP-galactose, 5 mM MgCl2 and 500 ng purified protein in Tris-HCl buffer (100 mM, pH 7.4). After incubating for

1 h, the reaction was stopped by adding 300 mL of ice-cold methanol. The reaction mixture was then filtered through a 0.2 mm filter

(Millipore) before being used for LC-MS analysis. HPLC conditions for the analysis of SGAs were described in Metabolite profiling

section. Peak identification of each component was confirmed using authentic samples and post-run by LC-MS/MS analysis.

CRISPR/Cas9 constructs design
Two SlMYB12 target sites (sgRNA1 and sgRNA2) of 19 nucleotide (nt) weremanually selected (Figure 4C). To confirm the specificity,

the sgRNA sequences were aligned to the tomato whole genome, and no potential sites with mismatches over six bases were

found. The CRISPR/Cas9 constructs were generated following the description (Ron et al., 2014). The sgRNA sequences

were incorporated into two 60 nt oligonucleotides (sgRNA1-Forward: GAAGCTGAGTTTATATACAGCTAGAGTCGAAGTAGT

GATTGCCAGCTTGTGATAGTGCCA, and Reverse: GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAACTGGCACTATC

ACAAGCTGG; sgRNA2-Forward, GAAGCTGAGTTTATATACAGCTAGAGTCGAAGTAGTGATTGGAAGATCTAGCAAAGATAG,

and Reverse, GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAACCTATCTTTGCTAGATCTTCC). The two primers were

annealed and extended to make 100-bp double-strand DNA fragment, and then cloned into NcoI-linearized pMR093 vector with

the In-Fusion cloning kit (Clontech). The plasmid with the correct insertion was introduced into Agrobacterium tumefaciens strain

GV3101 for tomato transformation.
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Transformation of S. lycopersicum cv. Moneymaker was performed. Regenerated plantlets capable of growing on Basta-containing

(1 mg$L-1) medium were detected with the pMR093-specific primers AtU6 (Forward: CCGGGGATCCTCTAGAAGCTTCGTTG

AACAACGG and Reverse: CGTCGGGCCCTCTAGAAAAAAAAGCACCGACTCGG). For the positive T0 plants, the gene fragment of

SlMYB12 was amplified with primers that flanked both sgRNA targets. The PCR products were purified and cloned into the pLB

vector for sequence determination. The T0 plants carrying the targeted mutation were transplanted into the greenhouse. To test the

stable heritability of CRISPR/Cas9-induced mutations, 96 plants were grown for each family. All T1 plants were genotyped with

pMR093-specific primers. For the T1 plants not containing the CRISPR/Cas9 cassette, the PCR products of SlMYB12 were

sequenced.

QUANTIFICATION AND STATISTICAL ANALYSES

The values of the coefficient of variation were calculated for each metabolite in PIM, CER, BIG and whole population. The formula is

as follows: s/u, where s and u are the standard deviation and mean of each metabolite in the population, respectively. Broad-sense

heritability (H2) was estimated by treating accessions as a random effect and the biological replication as a replication effect using the

following formula:H2 = = varðGÞ=ðvarðGÞ+ varðEÞÞ, where var(G) and var(E) are the variances derived from genetic and environmental

effects, respectively. The quantification for the other parts can be found in the relevant sections of the Method Details.

DATA AND SOFTWARE AVAILABILITY

The deposited number for the RNA-seq reads reported in this paper is PRJNA396272.

The original data and results were presented in Tables M1-M9 at Mendeley Data and could be found at https://data.mendeley.

com/datasets/gbz22vb344/1.

ADDITIONAL RESOURCES

Tomato core collection: http://tgrc.ucdavis.edu

Tomato Functional Genomics Database (TFGD): http://ted.bti.cornell.edu

Data deposition: https://ncbi.nlm.nih.gov/sra and https://www.ebi.ac.uk/ena
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Figure S1. Characters of Variome, Metabolome, and Transcriptome in Three Populations, Related to Figure 1

(A) Neighbor-joining of 448 varieties calculated from whole genome fourfold degenerate SNPs. 448 varieties included four green-fruited wild accessions (one

S. habrochaites and three S. peruvianum), one S. galapagense, one S.cheesmaniae and 442 red-fruited accessions.

(B) Principle component analyses of 980 metabolites in red-fruited population.

(C) Distribution of broad-sense heritability (H2) of metabolic traits (n = 980) detected in the metabolite panel across two biological replicates.

(D) Coefficient of variation for PIM, CER, BIG and whole group, respectively.

(E) Boxplot of coefficient of metabolite for three population. The mean value of 980 metabolites is 1.13, 1.22 and 1.24 for PIM, CER and BIG, respectively.

(F) Distribution of detected genes in each tomato samples. The mean gene number for all the samples is 20,226.

(G) Percentage of genes detected in the tomato population. A total of 18,675 (61%) expressed genes could be detected in more than 80% of the samples.

(H) The parameter, soft threshold, determination for module construction. The best value is 10 for this dataset.

(I) Genes cluster dendrogram of fruit transcriptome. 31 modules were built based on gene expression value. Each color indicates a different gene module.
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Figure S2. Distribution of mGWAS and Determination of eQTL Signals, Related to Figure 1

(A) Distribution of mGWAS signals for different metabolic classes. A total of 3,526 signals were identified for 514metabolites. Circles next to the genome segment

indicate the positions and were proportional to the number of signals for each compound class. Different metabolic classes are marked with different colored

circles.

(B) Distribution of mGWAS signal number per 1 Mb window across the genome. The horizontal dashed line indicates the threshold (permutation test < 0.01) for

signal hotspots.

(C) Diagnostic analysis of hidden confounding factor by PEER. The x axis is the factor number and the y axis is the variance explained by corresponding factor

number.

(D) Distribution of pairwise genes distance. 85.35% of pairwise genes were less than 30 kb, the point of separation for cis-eQTL and trans-eQTL.



Figure S3. Effect of Domestication and Improvement Related to Fruit Weight on the Genome and Metabolome, Related to Figure 3

(A) Fruit phenotypes of the parental lines pim (S. pimpinellifolium) and cer (S. lycopersicum var. cerasiforme), and the two bulked pools with extreme fruit weight

from the F2 population, each containing 46 individuals. Scale bars in (A) and (B), 1 cm.

(B) Fruit phenotypes of the parental lines cer and big (S. lycopersicum), and the two bulked pools with extreme fruit weight from the F2 population, each containing

50 individuals.

(C) Genomic regions of the fruit weight genes differing between pim and cer. Two regions in Chr.1 and Chr.3 were identified. The SNP indices (ratio of the SNPs

that are identical to those in the big-fruited parent) of the small and large pools are shown with green and orange lines, respectively. The DSNP index (subtracting

the SNP index of the small-pool from that of the large-pool) and its 95%confidence interval are shownwith red and black lines, respectively. Regions with aDSNP

index above the confidence line are highlighted with pink shadow.

(D) Overlap between bulked pool (pim-cer) shifted metabolites and PIM-CER group shifted metabolites.

(E) Genomic regions of the fruit weight genes differing between cer and big. Four regions in Chr.1, Chr.9 and Chr.11 were identified.

(F) Overlap between bulked pool (cer-big) shifted metabolites and CER-BIG group shifted metabolites.
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Figure S4. Frequency of One SGA Locus and Genetic Effect of Two SGAs loci, Related to Figure 2

(A) Allele frequencies of locus on ch01:84029382 (CDS of GAME9) in three groups.

(B) SGAs content in varieties containing the two allele combinations. Total content of three major SGA chemicals (SlFM1785, SlFM1885 and SlFM1985)

was calculated for each combination of two alleles (01:84029382 and 10:64501127). Letters above the bars indicate significant differences as determined by

Student’ s pairwise t test (p < 0.05). Data represent mean ± SEM and was analyzed by Student’s t test.
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